
Engage: A Deployment Management System

Jeffrey Fischer
genForma Corp, USA

jeffrey.fischer@genforma.com

Rupak Majumdar
MPI-SWS, Germany
rupak@mpi-sws.org

Shahram Esmaeilsabzali
MPI-SWS, Germany

shahram@mpi-sws.org

Abstract
Many modern applications are built by combining independently
developed packages and services that are distributed over many
machines with complex inter-dependencies. The assembly, instal-
lation, and management of such applications is hard, and usually
performed either manually or by writing customized scripts. We
present Engage, a system for configuring, installing, and managing
complex application stacks. Engage consists of three components: a
domain-specific model to describe component metadata and inter-
component dependencies; a constraint-based algorithm that takes
a partial installation specification and computes a full installation
plan; and a runtime system that co-ordinates the deployment of the
application across multiple machines and manages the deployed
system. By explicitly modeling configuration metadata and inter-
component dependencies, Engage enables static checking of appli-
cation configurations and automated, constraint-driven, generation
of installation plans across multiple machines. This reduces the te-
dious manual process of application configuration, installation, and
management.

We have implemented Engage and we have used it to success-
fully host a number of applications. We describe our experiences
in using Engage to manage a generic platform that hosts Django
applications in the cloud or on premises.

Categories and Subject Descriptors D.2.9 [Software Engineer-
ing]: Management; K.6.2 [Management of Computing and Infor-
mation Systems]: Installation management

General Terms Design, Languages, Management

Keywords Application deployment, declarative languages, cloud
computing

1. Introduction
Many modern applications are built from components which are
inter-dependent, distributed, and created independently. By com-
bining existing components in a loosely-coupled architecture, ap-
plications delivering significant functionality in a scalable manner
can be quickly created. However, the assembly, installation, and
management of such systems in a consistent and effective way is
currently a difficult and resource-intensive problem. Packages and
services have dependencies that have to be satisfied, and miscon-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

figurations between individual components and services can cause
the application to become unstable or corrupted.

While there are tools that automate portions of this process for
specific packages, e.g., package managers on Linux distributions,
there are few tools that provide end-to-end functionality for the en-
tire software stack, especially for distributed applications running
on many nodes (e.g., in a private or public cloud infrastructure).
In practice, large-scale software stacks are often managed using
custom script-based tools and manual techniques. This process is
error-prone, as upgrades to individual packages can break existing
and implicit dependencies in the system. It is also labor-intensive,
since the process must be performed manually by system admin-
istrators, developers, and end-users, and effort may be duplicated
within the same organization. In fact, application administration
overhead is mentioned as one main barrier to the adoption of free
and open-source software [13].

The challenge of dependency management in software package
installation is well-studied, and constraint-based tools to manage
package installations on single machines have been developed [12,
17, 19]. However, none of the available tools consider additional
factors that come up in managing a distributed application stack:

1. Physical context: Components may be distributed across mul-
tiple machines. Certain dependencies (e.g., libraries) have to be
resolved within the context of a single machine (e.g., each ma-
chine running a Java component must install (possibly different
versions of) the Java Runtime Environment), and certain de-
pendencies must be resolved across machines (e.g., an applica-
tion server and a back-end task processor may live on different
servers but connect to the same database). Existing tools do not
consider multi-machine dependencies.

2. Configuration management: Additionally, each component of
an application may have its own collection of configuration set-
tings. Such settings may be maintained in a configuration file
or database or passed to a component through command line
parameters or environment variables. These settings may de-
termine how a component interacts with its dependencies. One
must ensure that all selected components of an application have
been configured to connect to each other as required by their
dependency relationships. For example, an application depend-
ing on a database must be configured to connect to the host and
port number on which the database is listening, and may need
to know the database user’s name and password. Currently, it
is the user’s responsibility to connect the configuration options
between components (e.g., by manually setting the values in the
application’s configuration file).

3. Application management: Many application components use
long-running processes (e.g. services or daemons) that need to
be explicitly started, restarted, or stopped. Startup/shutdown of
the full application stack can be deceptively difficult to auto-
mate due to timing issues between dependent services. If a com-
ponent is started without first ensuring that all of its dependen-



cies have completed their startup, it might intermittently fail
due to connection errors. Most package management tools do
not consider service startup/shutdown, and do not provide ways
to express dependencies in the application stack.

We present Engage, a system for managing application stack
configuration, installation, and maintenance. Engage has three
components. The first is a declarative framework for specifying
component metadata such as configuration parameters as well as
dependencies between different components and services. The sec-
ond is a constraint-based algorithm that takes apartial installation
specification(a list of the main application components to be in-
stalled) and automatically produces a full installation specification
(a list of all components to be installed). Finally, a runtime system
co-ordinates the installation of components in an installation spec-
ification and manages the deployed system locally or on the cloud.

In Engage, a component, called aresource, is modeled using
two parts: atypeand adriver. A typefor the resource describes con-
figuration options and dependencies associated with a component.
The configuration options specify required configuration parame-
ters for the components, including input configuration options that
are provided by components that the current resource depends on,
and output configurations that the configured resource exports to
downstream dependencies. The dependencies specify other com-
ponents the current resource depends on, such as the machine in
which it executes, other libraries and services that must be present
on the same machine, and other services (possibly on diffferent ma-
chines) that it requires. Adriver for the resource specifies a state
machine that manages its lifecycle at runtime (e.g., installation,
startup, shutdown, etc.). Together, the type and the driver specify
completely the dependencies and the configurations required to in-
stall and use a resource. A subtyping mechanism ensures that each
resource can be developed independently and reused in many dif-
ferent contexts.

A resource instanceis a specific instantiation of a resource that
is deployed, for instance, a specific server or a specific instance of
a MySQL database. An application is described by compositions
of resource instances (aninstallation specification), and it can be
checked statically to ensure that all dependencies are met, there
are no circular or conflicting dependencies, and that configuration
parameters between dependent components are passed correctly.
For example, we can check that, if an application component has
a dependency on a database, there is a resource instance in the in-
stallation specification corresponding to a database component, and
the application component gets its input configuration options for
the database from the outputs of the database component. Since re-
sources can model the physical context of a machine, we can stati-
cally reason about the physical context; for instance, checking that
certain libraries exist on the same machine. Additionally, the re-
source drivers ensure that the runtime system has enough informa-
tion to start up and shut down services according to their dependen-
cies. Thus, the resource types enable static checking of application
stacks for dependencies and conflicts, for configuration and phys-
ical context management, and the types together with the drivers
enable runtime application management.

Rather than writing the entire installation specification, which
can be long and tedious, Engage allows the user to only specify
a partial installation specification, which outlines the main ap-
plication components and the machines they should be installed
on. A configuration enginetakes the partial installation specifi-
cation and produces afull installation specificationby computing
the transitive closure of dependencies of the components, resolving
choices between components through Boolean constraint solving,
and adding component dependency links to form a directed acyclic
graph of resource instances.

The Engage runtime system then takes this full installation spec-
ification and deploys it (locally or on the cloud), using the de-
pendency order on resource instances and the actions in the re-
source drivers to order the sequence of installations and startups.
The drivers specify the order in which operations can be performed
on a resource instance, and also implement each operation using
an underlying programming language. The runtime system moni-
tors the application as it runs, and can manage the application stack
(e.g., to stop the application) based on the dependency order spec-
ified in the install specification. At the end of this process, the user
should have a full application installed, configured, and running,
potentially across multiple machines.

We have implemented the Engage system and have used Engage
as the deployment and management tool for a number of case stud-
ies. The core of Engage contains about 26K lines of Python code,
6K lines of OCaml code, and about 5K lines of metadata. Engage is
integrated with both Rackspace and Amazon Web Services and can
deploy applications on these services. Engage has been used as the
core technology behind a commercial platform-as-a-service com-
pany for application stacks written in Django and using standard
components such as Python packages, databases (MySQL), key-
value stores (Redis, MongoDB), message queues (RabbitMQ, Cel-
ery), and web caches (Memcached). It has efficiently managed the
configuration, deployment, and upgrades of complex third-party
applications. In addition, we have used Engage to configure and
manage Java-based and pure Python applications.

Related Work Engage is different from anoperating-system-level
package manager(OSLPM), such as dpkg for Debian, RPM, or
apt. These tools manage dependencies among packages on a single
machine, but do not provide support for configuration management,
application management (e.g., server startup), or multi-machine de-
ployments. However, they form the building blocks for Engage: a
driver for a resource can use an OSLPM to install the required pack-
ages on a machine. Thus, Engage is complementary to OSLPM,
and uses OSLPM’s to provide support for higher-level issues in ap-
plication deployment and maintenance for each platform.

Constraint-based tools [11, 17–19] manage individual software
packages at a single machine level, but do not provide support for
configuration management, multi-machine deployments, or appli-
cation management. A constraint usually specifies pre-requisites
(and conflicts) for a package, but does not model configuration pa-
rameters or service startup/shutdown requirements. The constraint-
based configuration in Engage is inspired by these tools, but in
addition, Engage provides support for configuration and applica-
tion management across multiple physical contexts (machines).
The distribution editor of the EDOS project [17] provides a means
to check the consistency and installability of a set of interdepen-
dent packages. However, in the distribution editor, this informa-
tion is not used for analysis or for application-level installation.
Model-based formalisms are used to detect compatibility and up-
grade problems [10, 11], but not across physical contexts, nor tar-
geted toward application stack management.

The input/output/configuration ports of Engage’s resource types
were inspired by module systems for more general purpose lan-
guages, including Units [14], nesC [15], and ArchJava [7]. Un-
like these systems, the connections between modules (resources)
in Engage are implicit, using dependency constraints to instanti-
ate resources and establish connections. Engage’s resource defini-
tion language provides a combination of traditional module sys-
tems (importing/exporting definitions, subtyping of individual val-
ues and structures) and constraint languages.

Engage is similar toconfiguration managementsystems such as
Puppet [1], Chef [2], LCFG [8], and CfEngine [9], which provide
a domain-specific language to model the “desired state” for a ma-
chine, e.g., files that should be present and services that should be



running. These systems use a client-server model in which a server
holds the model of the desired state for a machine, and the client en-
sures this configuration is met. Engage improves upon the design of
existing configuration management systems in the following ways.
First, Engage separates the declarative specification of resources
(resource types) and the imperative details of their installation (in-
stances and drivers). This enables type-checking for configurations
and to detect configuration or dependency problems statically. Sec-
ond, through the constraint-based configuration engine, Engage al-
lows the compact specification of application stacks, usually over
an order of magnitude smaller than the full installation specification
required by other systems. In practice, we have found the combina-
tion of instance/type separation and a contraint-based dependency
model result in very flexible install specifications. We can take an
application and deploy it on multiple platforms (e.g. MacOSX and
Linux) and in multiple configurations (e.g. development, testing,
and production) without significantly more work than is required
for a single configuration. This is not possible with traditional con-
figuration management systems, which are optimized for keeping
large numbers of nearly identical systems in a given standard con-
figuraiton.

Finally, while configuration management systems can be used to
support resource management over multiple servers, each client is
usually managed in isolation with no coordination between servers.
Engage provides a means to coordinate and configure between
services across machines according to their dependencies.

SmartFrog [16] supports distributed application deployment by
modeling the components of a system and providing a framework
for lifecycle managersto manage individual components and their
coordination. Engage’s deployment engine uses a similar approach,
with drivers in lieu of lifecycle managers. Engage additionally
uses the dependency relationship information it obtains from the
configuration phase to determine the sequencing of deployment
actions. The use of constraint-based configuration is also novel.

2. Overview
We now describe Engage through an example. As noted before,
Engage has three main components:

1. A declarative language to describeresources. A resource is
a generic term for a software package (e.g., the Apache web
server), operating system (e.g., Ubuntu 10.4), or a virtual or
physical machine. Its description consists of atype (the con-
figuration parameters and dependencies) and adriver (a state
machine for managing the component).

2. A configuration enginethat takes a database of resources and
a partial installation specificationand produces afull installa-
tion specificationthat describes how a collection of software
components should look when installed and configured.

3. The Engage runtime, consisting of adeployment engineand
runtime services that install and manage components in a de-
ployment. It calls the drivers of each component in the full in-
stallation specification and starts services in dependency order.

OpenMRS We demonstrate how Engage can be used to install
and manage OpenMRS, an open source enterprise medical records
system [20]. OpenMRS is written in Java, and runs as a servlet con-
tained within the Apache Tomcat webserver. It depends on Java,
version 5 or greater. Either the Java Developer Kit (JDK) or Java
Runtime Environment (JRE) may be used. The Tomcat distribution
should be at least version 5.5 but before 6.0.29. OpenMRS talks to
a MySQL database in the backend, where the MySQL distribution
should be version 5 or greater. In a production setting, the database
will run on a separate machine from the application server. Open-
MRS itself does not have any specific operating system dependen-

admin_password= config_port.admin_passsowrd} 

mysql: {host = input_ports.host.host_name 

port= config_port.port 

os_type: string,

os_user_name: string}

ServerWindows−XP extends

Mac OSX 10.6 Serverextends

host: { ... } 

input_ports

Server map= {host = host}

Server map= {host = host}

inside

host: {

Server

config_port

hostname: string

MySQL 5.1

os_type, os_user_name}
host: {hostname, 

java: {type,
home = config_port.
JAVA_HOME}

map= {host = host}

Server

JAVA_HOME: path

Java

config_port

input_ports

output_ports

inside

...
...

output_ports

admin_password: password = ¨admin¨

port: tcp_port = 3306

install_dir: path = ¨/var/data¨

os_type = ¨windows−xp¨

...

config_port

= ¨local_host¨,

config_port

...

os_type = ¨mac−osx¨

config_port

JavaJDK 1.6

JRE 1.6 Java

extends

extends

inside

Tomcat 6.0.18

manager_port: tcp_port = 8080

admin_user: string = ¨admin¨

admin_password: password = ¨admin¨

input_ports

host: { ... },

java: { ... }

config_port

output_ports

tomcat: { ... }

Java map= {java = java}

environment

config_port

input_ports

java: { ... }, tomcat: {...}, mysql: {...}

out_ports

url = ¨input_ports.tomcat.host.host_name

:input_ports.tomcat.manager_port/openmrs¨

database_user: string = ¨openmrs¨

database_password: password = ¨openmrs¨
home: path = ¨/users/jfischer/test/openmrs¨

inside

environment

peers

map= {java = java}Java

OpenMRS 1.8

MySQL 5.1

Tomcat 6.0.18 map= {tomcat = tomcat}

map= {mysql = mysql}

Figure 1: Resource types for OpenMRS installation



{ "id": "server", "key": "Mac-OSX 10.6",

"config_port": {

hostname="localhost", os_user_name="root"

}

},

{ "id": "tomcat", "key": "Tomcat 6.0.18",

"inside": { "id":"server" }

},

{ "id": "openmrs", "key": "OpenMRS 1.8"

"inside": { "id":"tomcat" }

}

Figure 2: Partial installation specification for OpenMRS

cies. Thus the operating systems are limited by the availability of
Java and MySQL. This includes Windows XP/Vista, Linux, Solaris,
and Mac OSX. Different executables for Java and MySQL are re-
quired for each platform.

A single-machine installation for OpenMRS is described on the
OpenMRS web page, and consists of a 10-page document. This
document gives a list of the software components which must be
installed in order to install OpenMRS, in their dependency or-
der. It points to a different document for installing and configur-
ing MySQL. Moreover, the document gives separate conditions for
Windows and for Ubuntu (after 10.10 and before 10.10). The instal-
lation requirements and dependencies in the installation are given
as comments in the document. We give two examples:

• Java must be installed before installing Tomcat.

• [When starting OpenMRS] Ensure that Tomcat is started by
checking to see if icon in the tray is green (Windows install).

It is the user’s responsibility to troubleshoot the installation if some
of these conditions are not met. When moving from one deploy-
ment (e.g., test) to another (e.g., production), the user must man-
ually reconstruct all the installation steps (or write ad hoc scripts
to automate the steps). Moreover, the instructions are sometimes
incomplete (for example, how to check if Tomcat is started on
Ubuntu? How to check it programmatically?). Our intent is not to
deride the OpenMRS installation document (indeed, OpenMRS has
a very readable set of instructions), but to point out that these are
common issues in many installation specifications.

Engage We now describe how the OpenMRS installation is man-
aged in Engage. For simplicity, we only describe the configura-
tion for a Mac OSX 10.6 server with Tomcat 6.0.18. Software or
hardware components, calledresources, are represented in Engage
using two parts: aresource typedescribes the configuration meta-
data and dependencies on other resources, and aresource driverde-
scribes a state machine that manages the lifecycle of the resource.
We assume resource types and drivers are written by the component
developer, not the end user installing the application.

We first describe resource types. Figure 1 shows the resource
types that are relevant to the OpenMRS installation (simplified for
readability). (We omit describing a concrete syntax for resources.)
Each resource description has a (unique) key identifying the re-
source, sets of typed configuration, input, and output ports, and de-
pendency specifications on other components. Typically, the key
consists of the name of the package and its version. The ports spec-
ify attributes (key-value pairs) internal to the component’s con-
figuration (theconfigurationports), attributes derived from other
components on which the component depends (input ports), and
attributes that the component exports to downstream components
(outputports). For example, the resource type for keyMySQL 5.1
(MySQL version 5.1) has a configuration port calledport that
specifies the default port (3306), and has an output port, also called

port, that copies its value from the configuration port for down-
stream components connecting to it.

The dependencies come in three types. Aninside dependency
specifies the container resource in which the current resource must
execute. In general, this is a physical or virtual machine, or a “con-
tainer” like Tomcat which contains other packages. If a resource
does not have an inside dependency, it corresponds to a virtual or
physical machine. For example, the (abstract) resourceServer and
its subclassesMac OSX 10.6 andWindows-XP refer to machines.
On the other hand, the resourceTomcat 6.0.18 has an inside de-
pendency on aServer, meaning that in a deployment,Tomcat runs
inside a sub-class of resource typeServer (sinceServer is ab-
stract and cannot be instantiated). The resourceOpenMRS 1.8 has
an inside dependency onTomcat 6.0.18, since it executes as a
servlet inside theTomcat server.

An environment dependencyspecifies other resources that must
be present (and possibly execute) on the same machine as a pre-
condition for the installation and execution of the current resource.
For example, bothTomcat andOpenMRS have environment depen-
dencies onJava, which means that an instance of a subclass of re-
source type ofJavamust be installed on a machine beforeTomcat
or OpenMRS can be installed on that machine. In addition, an envi-
ronment dependency also specifies how configuration options from
the output ports of a resource flow into the input ports of the current
resource. For example, the output portjava in theJava resource
type is an input toOpenMRS 1.8

A peer dependencyspecifies resources must be present, but not
necessarily on the same machine. For example,OpenMRS 1.8 has
a peer dependency on theMySQL 5.1 database, meaning that an
instance ofMySQL 5.1 must be deployed beforeOpenMRS 1.8
can be deployed, but possibly on a machine different from that of
OpenMRS.

When a resource typeA depends on a resource typeB, the
resourceA can obtain the value of an output port ofB by using a
port mapping. A port mapping relates an output port of a resource
type to an input port of another. For example,OpenMRS 1.8 maps
the output portmysql of MySQL 5.1 into its input port that has the
same name.

Well-formed sets of resource types ensure that the union of all
dependency relations is acyclic, and that each input port is mapped
exactly once by the set of dependencies. Given a resource, we call
the set of resources that it transitively depends on its set ofupstream
dependenciesand the set of resources that transitively depend on it
its set ofdownstream dependencies.

Resourcetypescorrespond to the classes in an OO language,
resourceinstancesrepresent specific resources instantiations (e.g.
a copy ofMySQL 5.1 installed on serverdemotest and listening
on port 3306) and correspond to objects. An instance of a resource
has a globally unique identifier, fills in concrete values for all
ports, and replaces each dependency in the resource type with a
concrete instance. A full installation specification provides a list
of each instance required to deploy an application. For example,
given resource typesfor each component required by OpenMRS,
the user can write an installation specification describing all the
components that are required to install OpenMRS. Engage’s type
system can check the installation specification to make sure all
required dependencies are present in the correct physical context
and that each instance is correctly configured.

Writing full installation specifications can get tedious. Engage’s
configuration engine allows the end user to providepartial instal-
lation specifications, and automatically determines what other re-
sources must be instantiated to deploy the system. Figure 2 shows
the partial installation specification written by a user for Open-
MRS. It consists of three resource instances: an instanceserver

for a machine running Mac OSX version 10.6, an instancetomcat



of Tomcat running insideserver, and an instanceopenmrs for
the OpenMRS application running insidetomcat. In particular, the
user does not have to explicitly give the other dependencies on Java
and MySQL. The partial installation specification may also define
values for individual configuration port properties. In our example,
the hostname andos user name properties have been assigned
values. Unassigned configuration properties will take the default
values defined in the associated resource types.

The configuration engine takes this partial installation specifi-
cation and expands out all the dependencies to generate a set of
Boolean constraints such that the Boolean constraints are satisfi-
able iff there is a full installation specification which includes all of
the resource instances mentioned in the partial installation specifi-
cation. The atomic propositions in the Boolean constraints consist
of instances of resources: the proposition is true in a satisfying as-
signment iff the corresponding resource instance must be deployed.
For the partial installation specification of Figure 2, the configura-
tion engine generates the following constraints:

server ∧ from install spec
tomcat ∧ from install spec
openmrs ∧ from install spec
openmrs→ ⊠{jdk, jre} ∧ env dep
tomcat→ ⊠{jdk, jre} ∧ env dep
openmrs→ mysql ∧ peer dep
tomcat→ server ∧ inside dep
openmrs→ tomcat ∧ inside dep
mysql→ server ∧ inside dep
jdk→ server ∧ inside dep
jre→ server inside dep

where⊠S is the “exactly one” predicate that asserts that exactly
one proposition from the setS is true. The first three constraints
arise from the partial installation specification (each instance there
must be deployed). The next three arise out of environment (and
peer, for the last one) dependencies, and state that the deployment
of the l.h.s. implies the deployment of the r.h.s. The final five arise
out of inside dependencies. Note that the peer dependency of Open-
MRS on MySQL could be resolved by “creating” a new machine
instance and installing MySQL on that machine. However, our con-
straint generation process assumes that no new machines should be
created. Thus, unless explicitly specified, a peer dependency is de-
ployed at the same machine as the machine of its dependent.

The constraints are satisfied, e.g., by settingserver, jdk,
tomcat, mysql, andopenmrs to true, andjre to false. This cor-
responds to a deployment where a Java development kit, a Tomcat
server, a MySQL database instance, and the OpenMRS applica-
tion are all installed on a server running Mac OSX 10.6. Given
this solution, we can also “tie together” the input and output ports
by traversing the resource instances in topological order of depen-
dencies, starting with the output ports ofserver, and using the
definitions of output ports of preceding resource instances to get
values of input ports according to the port mappings specified in
the dependencies. Valuations to the input ports then determine the
configuration and output ports of the instance. In this way, we can
propagate configuration options along the application stack. The re-
sult of this process is afull installation specification, that details the
components that must be installed, their configuration parameters,
and the order of their installation. The last is obtained via the partial
order imposed by the dependencies of the resource instances.

Finally, the Engage deployment system takes an install spec-
ification and deploys the components in the order of dependen-
cies. The deployment system uses the corresponding driver for
each resource instance. A resource driver is a state machine with
special statesuninstalled, active, and inactive(the latter two pos-
sibly the same state), with guarded actions between states. Fig-

inactive active

uninstall

install

[↑ active]
start

stop

[↓ inactive]

restart

uninstalled

Figure 3: Resource driver for Tomcat

ure 3 shows an example resource driver for Tomcat. An action
(e.g.,install) is implemented in an underlying programming lan-
guage and performs some modification of the system state. For
example, theinstall action can call an OS-level package man-
ager to download and install a package. A guard describes a pre-
condition for the action, and is omitted if an action can be per-
formed at any time. A guard of the form↑ s(respectively,↓ s) states
that an action can be performed only when the state machines of
all upstream (respectively, downstream) dependencies are in state
s ∈ {uninstalled,active, inactive}. The actions on the state machines
are performed by the Engage runtime system. The runtime system
manages the state machines of all installed components and can
check the status of guards. The runtime system can also monitor
a deployment and shut it down (by shutting down services in the
reverse order of dependencies).

Engage ameliorates the problems of manual deployment in the
following ways. First, dependencies among resource types ensure
that required packages are installed when a resource instance is
being installed (e.g.,Java has already been installed before in-
stalling Tomcat). Second, the resource drivers and the runtime
ensure that required services are already started when starting an
application (e.g.,Tomcat andMySQL daemons are already started
whenOpenMRS is started: their resource drivers are both inactive
when startingOpenMRS). While there is work involved in devel-
oping resource types and drivers, they are done once by the pack-
age developer, and any subsequent installation scenario involving
the resource is completely automated. In contrast to ad hoc cus-
tom scripts, the declarative language enables static detection of
configuration problems, e.g., cyclic dependencies between compo-
nents, or unsolvable constraints in installation. In contrast to con-
figuration management systems, the configuration engine signifi-
cantly reduces user input: in our implementation, the (unsimplified)
OpenMRS partial installation specification took 22 lines, and the full
installation specification was 204 lines. Note that resource descrip-
tions are reusable and can be used in different installations; e.g,
theMySQL resource can be used in any deployment that requires a
MySQL database.

3. Resource Types
In Engage, the fundamental abstraction for software and hardware
components is aresource. A resource consists of a description of
the metadata required to configure, install, or upgrade a compo-
nent (itsresource type) and adriver consisting of code that reads
the metadata and manages the lifecycle of the component (installa-
tion, upgrade, rollback, etc.). We explain resource types here, and
explain drivers in Section 5.

3.1 Resource Types

A resource typeis an abstraction to model how a component may
be instantiated. Aresource instanceis an instantiation of a resource
type that describes how a specific resource will be (or has been)
configured and installed. In analogy with object-oriented program-
ming, a resource type is a class and a resource instance is an object
of that class. Each resource type has a unique identifier (usually,



name of the component and its version) in a global name space. In
addition, a resource type has ports and dependency constraints.

Ports Configuration data for a component are described inports.
A port has anameand atype. We assume an (unspecified) set of
base types. For a portp, we writep.name andp.type to refer to the
name and the type, respectively. Communication of configuration
data between components is performed by connecting appropriate
ports of two components.

Dependencies Dependencies between resource types specify or-
dering constraints between components, and determine how ports
of a resource get their values. Engage specifies three types of de-
pendencies.

An inside dependencyspecifies that an instance of a resource
type can exist only inside an instance of another resource type; e.g.,
Tomcat can exist only “inside” a Server. Each resource type has ei-
ther zero inside dependencies, in which case it must represent a
physical machine, or exactly one inside dependency. Inside depen-
dencies can be nested: e.g., a servlet can be inside Tomcat, which in
turn is inside a server. For any resource type, one can walk the in-
side dependencies to eventually reach a physical machine, and this
is the machine on which the component gets installed and run.

A resource typeR1 has anenvironment dependencyon a re-
source typeR2 if it depends on a resource of typeR2 to be installed
in an enclosing resource. As an example, Tomcat requires that the
Java runtime environment be installed on the machine it is installed
on. (However, Tomcat is not installed “inside” Java.)

A resource typeR1 has apeer dependencyon a resource typeR2

if it calls services provided by an instance ofR2. In this case, unlike
environment constraints, an instance ofR2 need not be installed on
the same machine as the instance ofR1. For example, OpenMRS
has a peer dependency on MySQL, and OpenMRS can make calls
to the database over TCP/IP.

Formal Model Formally, a resource type

R= 〈key, InP,ConfP,OutP, Inside,Env,Peer〉

consists of a (globally unique)keykey (usually consisting of a name
and a version), three disjoint sets ofinput portsInP, configuration
portsConfP, andoutput portsOutP, an optionalinside dependency
Inside or null, a set ofenvironment dependenciesEnv, and a set
of peer dependenciesPeer. We assume each portp ∈ ConfP is
either adefaultconstant or defined as a function of the ports inInP,
and each portp ∈ OutP is either a default constant or defined as a
function of the ports inInP∪ConfP. For a keykey, we write [[key]]
to denote the (unique) resource type for that key. For a resource
typeR, we writeR.key, R.InP, etc. to denote the components of the
resource type.

The input ports are used to receive data from other resources.
The output ports are used to affect the behavior of other resources
by providing configuration data. The configuration ports are used to
store resource-specific metadata used in configuration and installa-
tion. A configuration port of a resource can read from an input port
of the same resource, and an output port of a resource can read from
an input or config port of the resource.

Each dependency (inside, environment, or peer) is a pair
(key′, pmap), wherekey′ is a key to a resource andpmap is a par-
tial mapping from [[key′]] .OutP to R.InP.

Inside, environment, and peer dependencies induce ordering
relations on resource types. LetR and R′ be resource types. We
write R ¹i R′ (the insideordering) if R.Inside = (R′.key, ·). We
write R¹e R′ (theenvironmentordering) if (R′.key, ·) ∈ R.Env. We
write R¹p R′ (thepeerordering) if (R′.key, ·) ∈ R.Peer.

A machineis a resource whose inside dependency isnull.

Well-formedness A finite set of resource types is calledwell-
formedif the following conditions hold:

1. Each key appearing in an inside, environment, or peer depen-
dency is mapped to a resource type in the set (no pending de-
pendencies).

2. If a resource does not have aninsidedependency, it does not
have any input ports. Such resources usually correspond to
physical machines.

3. Each input port is mapped exactly once in the port mappings
of the inside, environment, and peer dependencies. Each output
port is assigned a value. That is, the range of port mappings in
two dependencies is disjoint, and the union of ranges is the set
of all input ports.

4. The ordering¹i ∪ ¹e ∪ ¹p on resource types is acyclic.

For any resource typeR in a well-formed set of resource types,
one can follow inside constraints to a machine. This represents the
physical context in which an instance ofR will be installed.

3.2 Abstract Resources and Subtyping

We extend the core language with inheritance and abstract resource
types. A resource type can be markedabstractor concrete. An
abstract resource type cannot be instantiated, but can be used for
inheritance. For example, in Section 2, we defined an abstract
resource typeServer for a server, and subclasses for Mac OSX
and Windows servers. The genericServer cannot be instantiated,
but its subclasses specifying the OS can be instantiated. Instances
of concrete resource types can be deployed. By default, we assume
resource types are concrete and omit the concrete qualifier.

Sub-resource types extend base resource type definitions by
adding ports and dependencies. Fields from a super-resource type
are implicitly replicated in the sub-resource type, or overridden as
explained below.

Figure 4 presents the subtyping rules to ensure well-formedness
of the sub-resource tree. The rules define subtyping relations≤in,
≤conf, and≤out for input, config, and output ports, respectively, their
extensions to sets of ports and port mappings, and a≤RT relation
that checks for subtyping between resource types by checking sub-
typing of the corresponding resource types of their inside, environ-
ment, and peer dependencies. We assume an (unspecified) subtyp-
ing relation≤ on the base types over which ports are defined. Note
that the subtyping relation on base types go on opposite directions
for input ports and for config and output ports. This is related to
the usual co-variance and contra-variance of method arguments.
Sub-resource types extend base resource types by defining more
input, config, and output ports, subtyping the inside dependency,
and adding additional environment and peer dependencies.

3.3 Resource Instances

A resource instanceis created from a resource type by assigning
concrete values to its configuration ports and by replacing depen-
dency constraints with directional links to other resource instances.
In addition to the components of a resource type, each resource in-
stance has a globally uniqueresource identifierthat uniquely iden-
tifies the resource instance. The identifier helps distinguish two in-
stances of the same resource type in a deployment, e.g., two servers
both running Mac OSX 10.6.

Deployment information for an application can be provided by
giving a set of resource instances obtained from corresponding re-
source types, such that for every instance in the set, each depen-
dency is instantiated with a concrete link to another resource in-
stance, and the values in the output ports and mapped input ports
for the resource instances match. Such a document is referred to as
an installation specification.



Input ports
p′.name = p.name p′.type ≤ p.type

p′ ≤in p

Config ports
p′.name = p.name p′.type ≥ p.type

p′ ≤con f p

Output ports
p′.name = p.name p′.type ≥ p.type

p′ ≤out p

Sets of input ports
∀p ∈ P · ∃p′ ∈ P′ · p′ ≤in p

P′ ≤IN P

Sets of config ports
∀p ∈ P · ∃p′ ∈ P′ · p′ ≤out p

P′ ≤CONF P

Sets of output ports
∀p ∈ P · ∃p′ ∈ P′ · p′ ≤out p

P′ ≤OUT P

Port mappings
∀(p,q) ∈ m · ∃(p′,q′) ∈ m′ · (p′ ≤out p∧ q′ ≤in q)

m′ ≤pm m

Refl

R≤RT R

Trans
R≤RT R′ R′ ≤RT R′′

R≤RT R′′

Resource types
R′.InP ≤IN R.InP R′.ConfP ≤CONF R.ConfP R′.OutP ≤OUT R.OutP

(~R′.Inside.key′Ä ≤RT ~R.Inside.key′Ä ∨ ~R′.Inside.key′Ä = ~R.Inside.key′Ä = null) ∧ (R′.Inside.pmap ≤pm R.Inside.pmap)
∀(I ,m) ∈ R.Env · ∃(I ′,m′) ∈ R′.Env · (~I ′Ä ≤RT ~IÄ ∧m′ ≤pm m) ∀(X,m) ∈ R.Peer · ∃(X′,m′) ∈ R′.Peer · (~X′Ä ≤RT ~XÄ ∧m′ ≤pm m)

R′ ≤RT R

Figure 4: The rules for subtyping between two resource types.

3.4 Syntactic Sugar and Extensions

For brevity, we introduce some syntactic sugar in the language and
in our examples. We allow a port to be a structure with named
fields. We allow disjunctions in the descriptions of inside depen-
dencies, and positive Boolean combinations of resource types in
environment and peer dependencies. For example, we can express
that a resource typeR (e.g., Tomcat) is inside either resource type
R1 (e.g., Mac-OSX 10.6) or resource typeR2 (e.g., Windows 7),
and a resource typeR (e.g., OpenMRS) has an environment depen-
dency on resource typeR1 (e.g., Java) as well as one ofR2 (e.g.,
MySQL) or R3 (e.g., Postgres). The use of disjunctions is a conve-
nient shorthand, and can be simulated by defining the appropriate
super-resource types and their sub-resource types. To simplify the
check for well-formedness, we require the ranges of two port map-
pings that are disjunctively combined to be identical.

To model a common idiom in which a resource depends on one
of a number of versions of a different one (e.g., OpenMRS depends
on versions of Tomcat before version 6.0.29), we add syntactic
sugar to allow specifying ranges of versions for the same pack-
age, which are internally expanded to disjunctions of the different
versions satisfying the range.

The implementation of Engage also has some extensions that
we do not model here. Each port of a resource type in our imple-
mentation has astaticor dynamicbinding. A static port is assigned
a value at the instantiation time of a resource of that type. For ex-
ample, these can be default values. A dynamic port is assigned a
value at the installation time of a resource. By default, we assume
all ports are dynamic (and we omit mentioning the binding explic-
itly). Only configuration and output ports can have the static bind-
ing. A static configuration port must be a constant. A static output
port is either a constant or a function of static configuration ports.
Inside, environment, and peer dependencies are extended with two
port maps: in a dependency of resourceRonR′, one port map maps
output ports ofR′ to the inputs ofR (as before), and the other maps
static output ports ofR to input ports ofR′. Static ports are useful to
flow configuration parameters in the “reverse direction” of depen-
dencies. For example, when installing OpenMRS, we need to pass
a server configuration file back to Tomcat. In our implementation,
we use static ports to achieve this. However, by the nature of static
ports, all configuration values flowing in the reverse direction can
be resolved statically, and these configurations will be known when
installingR′ even thoughRhas not been installed yet.

4. Configuration
In practice, writing the entire set of resource instances in an instal-
lation specification can be tedious. Instead, Engage allows the user
to specify apartial installation specification. A partial installation
specification is a set of partial resource instances, that is, a set of
resource instances for which only a subset of dependencies are in-
stantiated by concrete resource instances. For example, Figure 2
shows a partial installation specification with instanceserver ob-
tained from a resource of type Mac OSX 10.6, a resource instance
tomcat for a resource of type Tomcat 6.0.18, and a resource in-
stanceopenmrs for OpenMRS 1.8. An installation specification
extendsa partial installation specification if each resource instance
in the partial specification is also present in the installation speci-
fication. Engage automatically generates afull installation specifi-
cation extending the partial specification, by using the dependency
relations in the resource types and automated constraint solving.

The configuration engine takes as input a collection of resource
types and a partial install specification (a collection of partial re-
source instances) and produces as output a set of complete resource
instances (called the (full)installation specification) such that: (1)
for every resource instance, and for every inside, environment, or
peer dependency of its corresponding resource type, there exists
a resource instance that satisfies the inside, environment, or peer
dependency, respectively, and (2) each input port of a resourcein-
stance is mapped to exactly one output port of a different resource
instance.

Given a partial instantiation specification,I, the configuration
engine computes a set of Boolean constraints using the following
two steps. In the following, we assume that there is a fixed, well-
formed set of resource types,R, in the system and that every re-
source instance in the partial install specification is an instantiation
of some resource type from this set.

Hypergraph Generation The hypergraph generation phase takes
a partial install specification and constructs a directedresource in-
stance graphwhose nodes are resource instances, and whose hyper-
edges represent dependencies between resource instances. Without
loss of generality, we assume that for each resource instance, the
inside dependency is eithernull or a disjunction of resources, and
the environment and peer dependencies are a set of disjunctions of
resources.



Tomcat

JDK

Open MRS
env env

JRE MySQL

Server

peers

insideinside

inside

inside

inside

X

XX

Figure 5: Hypergraph for partial installation specification in Figure 2
.

If a resource type has a dependency on an abstract resource
r, we replace the dependency tor with a disjunction of concrete
resources in the following way. We traverse the subtypes ofr in
the subclassing tree forr, starting atr and stopping whenever we
see a concrete subtype ofr. In this way, we get a “frontier”F of
subtypes ofr of concrete resources. We replace the dependency on
r by a disjunction of the concrete resources inF. For example, if
there is a dependency on the abstract resourceJava (see Figure 1),
it is replaced by the disjunction of the concrete resourcesJDK 1.6

andJRE 1.6. After this transformation, there are no dependencies
on abstract resources. (If such a frontier cannot be found, that is,
if there is an abstract resource at the leaf of the subclassing tree
rooted atr, we stop with an error.)

The hypergraph generation algorithm,GraphGen(R,I), is a
worklist-based algorithm to process instances. It proceeds as fol-
lows.

First, for every resource instance in the partial install specifica-
tion, we create a node in the hypergraph and add it to the worklist.
Recall that in addition to the key of the resource, each resource
instance is globally uniquely identified by an additional identifier.

Second, we iteratively process partial resource instances from
the worklist until the worklist is empty. Suppose we are processing
resource instancer of resourceR. We go through the dependencies
of r.

We assume that the partial installation specification resolves
inside dependencies of each resource instance in it by providing
a resource instance on whichr is inside-dependent (that is, the
system does not generate new machines automatically). Givenr,
we check that there is an existing resource instance which matches
the inside dependency. For each inside dependency, we create a
directed edge labeled “inside” from the node in the graph that
representsr to the node that represents its container.

Now consider environment dependencies ofr. By assumption,
the environment dependencies are a set of disjunctions. For each
dependency in the set, we create a hyperedge with sourcer, and
targets as follows. Suppose the dependency is a disjunction of
resource keysk1, . . ., kn, and consider the processing of keyk1.
If we can already find a noder1 in the graph with keyk′1 such that
[[k′1]] ≤RT [[k1]] and such thatr1 is inside the same machine asr,
we add the noder1 as a target of the hyperedge. If there is no such
node, we instantiate a new resource instancernewwith keyk1, inside
the same machine as the machine ofr, add the node forrnew to the
graph as well as the worklist. (We addrnew to the worklist to ensure
its dependencies are processed in the future.) At the end of this
process, we construct a hyperedge with sourcer andn targets, one
for each disjunct in the dependency, and label it “environment”.

For peer dependencies ofr, we proceed similarly. The only
difference is that we look for a matching resource that is a subtype
of the key, but need not be on the same machine. If we find such
a node in the graph, we add it as the target of the hyperedge. If
we do not find a matching resource, we add a new instance, but
conservatively assume that the new instance resides in the same
machine asr.

Figure 5 shows the dependencies generated when processing the
partial instantiation specification of Figure 2. We have marked the
resource instances that were present in the specification with a “X”.

Lemma 1. Let R be a set of well-formed resource types andI
a partial install specification. Then procedureGraphGen(R,I)
creates a directed hypergraph G= (V,E), such that: (i) for each
resource instance r∈ I, we have r∈ V, and for each resource
instance r ∈ V, either r ∈ I or there is some resource instance
r ′ ∈ I that is transitively dependent on the key of r; (ii) for
each resource instance r∈ V, if r.Inside is not null, then there
is a resource instance r′ ∈ I such that there is an inside edge
from r to r′; (iii) for each resource key k such that there is an
environment dependency from k to r, there is an hyperedge with
source r containing a target resource instance with key k such that
this resource instance is on the same machine as r; (iv) for each
resource key k such that there is a peer dependency from k to r,
there is an hyperedge with source r containing a target resource
instance with key k.

Intuitively, this lemma states that the generated graph correctly
encodes the dependencies of all resource instances inI.

Constraint Generation Given the directed hypergraph
GraphGen(R,I), we generate Boolean constraints as fol-
lows. An atomic proposition is of the formrsrc(id), whereid is a
resource instance identifier; it states that the resource instance with
identifier id is installed in the machine obtained by following its
inside dependencies.

We generate two kinds of constraints from the graph.
First, for each vertex in the constraint graph that represents a

resource instance specified in the partial install specification, we
add the constraintrsrc(m, id). This constraint ensures that each
resource instance mentioned in the partial install specification is
indeed instantiated in the deployment.

Second, we generatedependency constraintsfor each nodev as
follows. For each hyperedgeewith sourcev and targets{v1, . . . , vn},
we generate a constraint

rsrc(v)→ ⊠{rsrc(v1), . . . , rsrc(vn)} (1)

where⊠S is the Boolean predicate that is true iff exactly one
proposition fromS is true. Formally,

⊠S ≡ (
∨

p∈S

pi) ∧
∧

p∈S

(p→
∧

q∈S,q,p

¬q)

We denote the conjunction of the set of all above predicates
for a set of well-formed resource typesR and a partial install
specificationI asGenerate(R,I).

Theorem 1. LetR be a set of well-formed resource types andI a
partial install specification. There exists a full installation speci-
fication extending the partial install specification iff the formula
Generate(R,I) is satisfiable.

A satisfying assignment to the Boolean constraints determines a
full installation specification extending the partial installation spec-
ification. We can compute the values of all input, configuration, and
output ports of all resource instances by a linear pass in topological
order of dependencies, filling in the input ports of each resource
instance based on the already-computed values of output ports.

5. Deployment
Engage’sdeployment enginetakes a full installation specification
and automatically deploys the application. It provides runtime sup-
port for provisioning servers, co-ordinating installations, as well



as generic monitoring, shutdown, and upgrade services for appli-
cations. The deployment engine usesdrivers for each resource to
co-ordinate its actions.

5.1 Resource Drivers

In addition to a type, a resource specifies adriver that implements
a state machine for the lifecycle management of the instances of
that type. A driver state machine consists of a set ofstatesand
a set oftransitionsbetween them. Each state machine has three
special states,uninstalled, inactive, and active, called thebasic
states. Initially, a state machine resides in itsuninstalled.

Each transition has aguardand anaction. The guard of each ac-
tion is eithertrue or a conjunctive condition about the basic states
of all the resource instances that the driver’s associated resource in-
stance depends on (i.e., the upstream resource instances) or the re-
source instances that depend on the driver’s resource instance (i.e.,
the downstream resource instances). Basic state predicates are of
the form↑ s or ↓ s, wheres ∈ {uninstalled, inactive,active}. A ba-
sic state predicate↑ s(respectively,↓ s) is true if the state machines
for all upstream (respectively, downstream) resource instances are
in states. Each guarded action is implemented in an underlying
programming language (Python in our implementation).

A resource instance starts its life in its initial state,uninstalled,
and proceeds through various states in the state machine depending
on transitions invoked by the deployment engine. If the guard of
a transition istrue, then the action can be performed at any time.
Otherwise, the transition blocks until the guard becomes true, at
which point the action is executed and the state is updated.

Formally, the driver for a resource typeR is a state machine
(Q, uninstalled, inactive,active,A, δ) consisting of a set ofstates
Q with {uninstalled, inactive,active} ⊆ Q, a set ofactionsA, and
a (partial) transition functionδ : Q× (BasicStatesPred× A)⇀ Q,
whereBasicStatesPredis a conjunction of basic state predicates.

Figure 3 shows the state machine for the Tomcat server. The
server starts in the initialuninstalledstate. The actioninstall
takes it to theinactive state. From theinactive state, the action
start takes it to theactive, and has the precondition that all
upstream dependencies are active. From theactivestate, thestop
action takes it back to theinactivestate and has the precondition
that all downstream dependencies are inactive. In theactivestate,
the server can be restarted. Each guarded action carries out system
changes and commands required to install, start, or stop the server,
as well as additional book-keeping.

5.2 Runtime Services

Provisioning The starting point of a deployment is the set of
physical or virtual servers on which the application software will be
installed. Engage provides a set of runtime tools to determine prop-
erties of servers, such as hostname, IP address, operating system,
CPU architecture, etc. These tools automatically create a resource
instance for the server, and in practice, are used to start writing a
new partial installation specification when the servers are known.
In addition, Engage provides integration with cloud servers through
the libcloud APIs [3]. If a machine resource instance in the partial
installation specification does not include configuration details, and
Engage is being run in a cloud environment, a new virtual server is
provisioned to perform the role of that machine in the deployment.
In this case, the additional host configuration details (obtained from
the cloud infrastructure) are added to the installation specification
before passing it to the configuration engine. Engage currently in-
tegrates with Rackspace cloud services and Amazon AWS.

Installation, Monitoring, and Shutdown Given a full installation
specification, the deployment engine executes commands on the
resource drivers for each resource instance in the specification such

that every driver state machine is in its active state. At this point,
the system is defined to be deployed.

The deployment engine orders resource instances according to
dependencies. Since the dependency ordering is acyclic, this is
always possible. In the beginning, the resource driver for each
resource instance is in its initial state. The deployment engine
executes driver transitions to bring each driver to its active state.
The process can be performed in parallel, as long as the dependency
ordering is met, and the precondition for each transition is satisfied.
Since the deployment engine tracks the states of each resource
instance, it can co-ordinate the calls.

In the multi-host case, we must coordinate the install across
multiple hosts. The implementation of a multi-host install can be
simplified if one can partially order the machines such that for ev-
ery two machinesm1 andm2, m1 is beforem2 if there is some re-
source instance to be installed inm2 that depends on some resource
instance inm1 but no resource instance to be installed inm2 depends
on some instance inm1. We have found this assumption to be valid
for all the systems that we have modeled thus far, and our imple-
mentation makes this simplifying assumption. In this case, we can
break the overall install specification into per-node specifications
and run a slave instance of Engage on each target host. The entire
deployment is then coordinated from a master host, with each slave
running with no awareness of the others. Slave deployments can
run in parallel when the slaves have no inter-dependencies.

The runtime includes a plugin framework for the automatic in-
tegration with monitoring and management tools. For example, En-
gage integrates withmonit[4], a process monitoring/restart service.
The runtime system adds an instance of monit to the installation
specification for each target host, ensuring that monit itself will be
installed. After the deployment completes, the resource type is used
by the plugin to generate a monit configuration file registered with
monit. Users can view the status and resource usage of each in-
stalled service. If the process associated with a service fails, it will
be automatically restarted by monit using a set of runtime services
provided by Engage.

Shutting down an application goes in the reverse dependency
order, and applies transitions of each resource driver to bring each
state machine to an inactive state. Again, the runtime co-ordinates
this activity since it knows the dependencies and tracks the states
of the resource drivers.

Upgrades Initial deployment of an application stack is only one
part of its lifecycle. Changes after initial deployment may incude
bug fixes, enhancements, infrastructure updates, security patches,
and updates to Engage itself. Given that Engage has a full descrip-
tion of the deployed system, multiple upgrade strategies are possi-
ble.

Currently, we require that the user (or a utility program, as in
the case of Django) provide apartial install specificationdescrib-
ing the desired new state of the system. This is used to compute a
full install specification for the deployed system. The current sys-
tem is then backed up, and any components that will be removed
or that cannot be upgraded in-place are uninstalled. The new sys-
tem is now deployed, per the install specification, upgrading and
adding components as needed. If the upgrade fails, the partially
installed components are uninstalled and the old version restored
from the backup. This upgrade approach is relatively easy to im-
plement, supports rollback in the case of errors, and can handle
changes to any layer of the stack, including Engage. However, all
upgrades using this approach experience the worst case upgrade
time, even if there are only minor differences between the old and
new configurations. We leave optimizations of the upgrade frame-
work as future work, possibly extending [11].



App name Description Source Comments
Areneae Simple test app Beta tester Deployed by a third party
Buzzfire Twitter bookmark and ranking app Open source Uses Redis key-value store
Codespeed Web application performance monitor Open source
Django-Blog Blogging platform Beta tester Deployed by a third party;

Installs 18 Python package
dependencies

Django-CMS Content Management System Open source
FA Manage faculty, student, and postdoc applications Beta tester Applicationused in production
Feature Collector Gather software feature requests Developed internally
WebApp Run production web site for Django hosting company Developed internally Application used in production

Table 1: Django applications. “Beta testers” are independent application developers who used the service.

6. Evaluation
We have implemented the Engage system and we have used it
in active deployment in providing platform-as-a-service support
for Django applications. The front-end for the declarative frame-
work and the configuration engine are written in about 6K lines of
Ocaml. We use the the MiniSat satisfiability solver to solve Boolean
constraints. The runtime system (provisioning and deployment en-
gine) and resource drivers are written in about 26K lines of Python.
In addition, we have about 5K lines of resource types in our re-
source library. We allow deployments to be performed either on
a given set of servers or on dynamically provisioned servers from
Rackspace or Amazon Web Services (AWS). The entire system,
including the resource types, is open source and (for Django appli-
cations) available through a web service.

We have installed several open source applications, including
OpenMRS (described in Section 2). In the following, we give two
case studies that we have performed using the system. The first
(JasperReports) was used as a case study to compare times for a
manual install versus the time needed to automate an installation
by developing the required resource types and drivers in Engage.
The second (Django applications) describes our experience hosting
third party applications on the cloud.

6.1 JasperReports

The Jasper Reports Server [5] provides a web user interface and
web service APIs for generating, viewing, and managing reports.
It runs in a servlet container (e.g., Apache Tomcat) and requires a
database (e.g., MySQL). The installation guide is 77 pages long,
with 8 pages dedicated to the specific approach we used for in-
stalling Jasper.

We compared the time for installing Jasper manually with the
time to automate the installation of Jasper in Engage. The manual
installations were performed by one of the authors, who had not
attempted to install Jasper previously. It took him 5 hours the first
time, 2 hours 15 minutes the second time, and converged to around
1 hour in subsequent tries. Much of the learning curve was due
to imprecise instructions that led to incorrect actions (followed
by debugging sessions and rolling back), environment issues, and
locating/downloading the required prerequisite software.

Engage already included resources for Tomcat and MySQL. To
automate Jasper installation, we created two new resources: one for
Jasper Reports Server itself and one for a MySQL JDBC connector
required as a dependency for Jasper. Specifying the resource type
for the JDBC connector required 40 lines. No additional Python
code was required for the driver as we were able to reuse existing
generic driver code for downloading and extracting archives. The
resource for Jasper was 69 lines of types and 201 lines of Python
code (including comments).

The automated installation of Jasper Reports Server via En-
gage performs environment checks (e.g., required TCP/IP ports
are available), downloads required application packages, installs
the components in dependency order, and starts the database, web
server, and reports server. After installation, the reports server can
be managed (start, stop, status check) via Engage, or automatically
integrated with 3rd party management tools.

The development time for Engage support of Jasper Reports
Server was 3 hours 56 minutes. This time was broken down into
47 minutes for resource type design, 81 minutes for driver develop-
ment, and 108 minutes for debugging and testing.

Running the automated install of Jasper Reports Server takes
17 minutes if the required software packages are downloaded from
the internet and 5 minutes if they are obtained from a local file
cache. The automation of the Jasper install via Engage ensures a
repeatable process, supports both local and cloud-based targets,
and can be used as a part of a larger deployment (e.g., where the
reports server can be used as a service to a web application). The
partial installation specification for Jasper is 26 lines long. The full
installation specification generated by the configuration engine is
434 lines long.

6.2 Django Applications

We implemented resources and drivers for installation and man-
agement of applications developed in Django [6], a web applica-
tion framework written in Python. A goal of our Django support
was to enable Django developers to deploy their existing applica-
tions on different environments (local test environments and pro-
duction environments on the cloud) with little changes and no need
to understand the internals of Engage. To achieve this, we built an
application packagerthat validates a Django application, extracts
some metadata used by Engage, and packages the application into
an archive with a pre-defined layout. This application can then be
deployed by Engage to the cloud or a local machine. We provide
pre-defined partial installation specifications for the same appli-
cation to be deployed in different configurations (e.g., debug or
production, local or cloud), supporting the migration of changes
through the full development lifecycle: from development to QA to
staging to production.

Django support involves 37 resources, of which 14 are specific
to Django applications. Engage allows the following (independent)
configuration choices for Django applications:

• OS: MacOSX (two versions) or Ubuntu Linux (two versions)
• Web server: Gunicorn or Apache HTTP server
• Database: SQLite or MySQL
• Optional components: RabbitMQ/Celery (message queu-

ing), Redis (key-value store), and memcached (caching)
• Optional monitoring : Monit



Thus, we currently support 256 distinct deployment configurations
on a single node. Furthermore, many topologies of these com-
ponents are permitted by the Engage architecture: everything de-
ployed to the same node, a separate node for each component,
multiple application nodes, etc. Finally, our Django driver supports
the declarative enumeration of Python packages available from the
Python package index (http://pypi.python.org) to be installed as a
prerequisite to the Django application.

Evaluating installs We have evaluated Engage’s Django support
by testing it with Django applications developed by us, obtained as
open source applications, and provided by third party beta testers.
Table 1 summarizes eight of the applications we deployed. All
eight applications were deployable by Engage without requiring
any application-specific deployment code. Areneae and Django-
Blog are particularly interesting, as they were developed and de-
ployed by beta customers (who had no prior contact with the paper
authors), using only our documentation and a few email exchanges.
WebApp is the production infrastructure that runs a commercial
PaaS (Platform as a Service) site. It is about 4K lines of code, and
uses asynchronous messaging, cron jobs, and caching. The partial
installation specification for the production site is 61 lines long and
has seven resources. The full installation specification generated by
the Engage configuration engine from this spec is 1,444 lines long
and has 29 resources.

Evaluating upgrades To evaluate application upgrades, we took
two snapshots of the FA application about four months apart. Both
snapshots represented production versions of the application. Be-
tween the two snapshots, the user interface, application logic, and
database schema all changed. We use South, adatabase migra-
tion framework, in the Engage Django driver to support applica-
tion upgrades involving database schema changes. Using South,
we were able to automatically upgrade from the old version to the
new version of the application, while preserving the content in the
database. If we introduce an error in the second application version
that causes the upgrade to fail, Engage automatically rolls back to
the prior application version.

7. Conclusion
We have presented Engage, a novel system for deployment of com-
plex multi-component, distributed applications. Our contribution in
this paper is twofold. First, we introduce a domain-specific lan-
guage that provides the necessary syntax to impose a set of com-
mon structural dependencies between a set of inter-dependent re-
sources succinctly and explicitly. Second, we present a tool suite
that exploits the language: (i) to provide effective static checks to
identify specification flaws and incompatibilities; (ii) to identify a
full installation specification of a system from an input partial in-
stallation specification; (iii) to carry out an installation specifica-
tion automatically; and (iv) to manage the life cycles of installed
resources automatically.

References
[1] Puppet at Puppet Labs: http://www.puppetlabs.com/.

[2] Chef at Opscode: http://www.opscode.com/chef/.

[3] Apache Libcloud: http://libcloud.apache.org/.

[4] Monit: http://mmonit.com/monit/.

[5] JasperReports Server: http://www.jaspersoft.com/reporting-server/.

[6] Django: https://www.djangoproject.com/.

[7] J. Aldrich, C. Chambers, and D. Notkin. Architectural reasoning in
ArchJava. InECOOP ’02, pages 334–367. Springer, 2002.

[8] P. Anderson and A. Scobie. LCFG: the next generation. InUKUUG
Winter Conference. UKUUG, 2002.

[9] M. Burgess. A site configuration engine.Computing Systems,
8(2):309–337, 1995.

[10] A. Cicchetti, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Za-
cchirol. A model driven approach to upgrade package based software
systems. InEvaluation of Novel Approaches to Software Engineering,
pages 262–276. Springer, 2010.

[11] R. Di Cosmo, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Za-
cchiroli. Supporting software evolution in component-based FOSS
systems.Science of Computer Programming, 2010.

[12] R. Di Cosmo and J. Vouillon. On software component co-installability.
In SIGSOFT FSE ’11, pages 256–266. ACM, 2011.

[13] R. Di Cosmo, P. Trezentos, and S. Zacchiroli. Package upgrades in
FOSS distributions: Details and challenges. InHotSWup ’08, 2008.

[14] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages.
In PLDI ’98, pages 236–248. ACM, 1998.

[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embeddedsys-
tems. InPLDI ’03, pages 1–11. ACM, 2003.

[16] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,
P. Murray, and P. Toft. The SmartFrog configuration management
framework.Operating Systems Review, 43(1):16–25, 2009.

[17] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak,
X. Leroy, and R. Treinen. Managing the complexity of large free and
open source package-based software distributions. InASE ’06, pages
199–208. IEEE Computer Society, 2006.

[18] P. Trezentos, I. Lynce, and A. L. Oliveira. Apt-pbo: solving the
software dependency problem using pseudo-Boolean optimization. In
ASE ’10, pages 427–436. ACM, 2010.

[19] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. OPIUM: Optimal
package install/uninstall manager. InICSE ’07, pages 178–188. IEEE
Computer Society, 2007.

[20] B.A. Wolfe, B.W. Mamlin, P.G. Biondich, H. Fraser, D. Jazayeri,
C. Allen, J. Miranda, and W.M. Tierney. Cooking Up an Open Source
EMR for Developing Countries: OpenMRS — A Recipe for Success-
ful Collaboration. InAmerican Medical Informatics Association An-
nual Symposium, pages 529 – 533. AMIA, 2006.


	Introduction
	Overview
	Resource Types
	Resource Types
	Abstract Resources and Subtyping
	Resource Instances
	Syntactic Sugar and Extensions

	Configuration
	Deployment
	Resource Drivers
	Runtime Services

	Evaluation
	JasperReports
	Django Applications

	Conclusion

