Engage: A Deployment Management System

Jeffrey Fischer Rupak Majumdar Shahram Esmaeilsabzali
genForma Corp, USA MPI-SWS, Germany MPI-SWS, Germany
jeffrey.fischer@genforma.com rupak@mpi-sws.org shahram@mpi-sws.org
Abstract figurations between individual components and services can cause

Many modern applications are built by combining independently the application to become unstable or corrupted.

developed packages and services that are distributed over many While there are tools that automate portions of this process for
machines with complex inter-dependencies. The assembly, instal-SPecific packages, e.g., package managers on Linux distributions,

lation, and management of such applications is hard, and usually€re are few tools that provide end-to-end functionality for the en-
performed either manually or by writing customized scripts. We tire software stack, especially for distributed applications running
present Engage, a system for configuring, installing, and managing®" manty noijes (e.g.,l in aﬂprlvate :)r ﬁ”bl'c CI?tUd |nfrastruc(;ure).
complex application stacks. Engage consists of three components: 4n practice, large-scale software stacks are often managed using
domain-specific model to describe component metadata and inter-cUStom script-based tools and manual techniques. This process is
component dependencies; a constraint-based algorithm that take&§T0'-Prone, as upgrades to individual packages can break existin

a partial installation specification and computes a full installation 219 'mtﬁl'c't dependenctlebs in thfe systéam. Itis l?lsg Iabort-lntenjlvge,
plan; and a runtime system that co-ordinates the deployment of theSINC€ th€ process must be peériormed manually by system admin-
strators, developers, and end-users, affidremay be duplicated

application across multiple machines and manages the deployed oo i L - .
system. By explicitly modeling configuration metadata and inter- within the same organization. In fact, application administration

component dependencies, Engage enables static checking of appligverhead is mentioned as one main barrier to the adoption of free

cation configurations and automated, constraint-driven, generationanql_ﬁpenh' s|(|)urce sc;f(tjwaE_!le]. i soft «
of installation plans across multiple machines. This reduces the te-. € challenge of dependency management in software package

dious manual process of application configuration, installation, and INStallation is well-studied, and constraint-based tools to manage
management package installations on single machines have been developed [12,

We have implemented Engage and we have used it to successal>[19]. However, none of the available tools consider additional
fully host a number of applications. We describe our experiences factors that come up in managing a distributed application stack:

in using Engage to manage a generic platform that hosts Django 1. physical context Components may be distributed across mul-
applications in the cloud or on premises. tiple machines. Certain dependencies (e.g., libraries) have to be
resolved within the context of a single machine (e.g., each ma-
chine running a Java component must install (possikffgdnt
versions of) the Java Runtime Environment), and certain de-
pendencies must be resolved across machines (e.g., an applica-
tion server and a back-end task processor may live fiardint
servers but connect to the same database). Existing tools do not

Categories and Subject Descriptors D.2.9 [Software Engineer-
ing]: Management; K.6.2Nlanagement of Computing and Infor-
mation Systenjsinstallation management

General Terms Design, Languages, Management

Keywords Application deployment, declarative languages, cloud consider multi-machine dependencies.

computing 2. Configuration management Additionally, each component of
an application may have its own collection of configuration set-

1. Introduction tings. Such settings may be maintained in a configuration file

L .) or database or passed to a component through command line
Many modern applications are built from components which are arameters or environment variables. These settings may de-
inter-dependent, distributed, and created independently. By com- tarmine how a component interacts with its dependencies. One
bining existing components in a loosely-coupled architecture, ap- st ensure that all selected components of an application have
plications delivering significant functionality in a scalable manner been configured to connect to each other as required by their
can be quickly created. However, the assembly, installation, and gependency relationships. For example, an application depend-
management of such systems in a consistent Hiedtve way is ing on a database must be configured to connect to the host and
currgntly a dfficult and resource-intensive probler_n._Packages _and port number on which the database is listening, and may need
services have dependencies that have to be satisfied, and miscon- 15 know the database user's name and password. Currently, it
is the user’s responsibility to connect the configuration options
between components (e.g., by manually setting the values in the
application’s configuration file).

Permission to make digital or hard copies of all or part of this work for persmnal 3. Application management Many application components use
classroom use is granted without fee provided that copies are not made outbstrib Iong-running processes (e g services or daemons) that need to
for profit or commercial advantage and that copies bear this notice and the fubiritati .. e

on the first page. To copy otherwise, to republish, to post on servers or ttritedes be explicitly _started, restarted, or Stopped- St&ﬂ_hp’[dOWﬂ of

to lists, requires prior specific permission gowh fee. the full application stack can be deceptivelyhidult to auto-
PLDI'12, June 11-16, 2012, Beijing, China. mate due to timing issues between dependent services. If acom-

Copyright© 2012 ACM 978-1-4503-1205/92/06. .. $10.00 ponent is started without first ensuring that all of its dependen-

cies have completed their startup, it might intermittently fail The Engage runtime system then takes this full installation spec-
due to connection errors. Most package management tools doification and deploys it (locally or on the cloud), using the de-
not consider service startighutdown, and do not provide ways pendency order on resource instances and the actions in the re-
to express dependencies in the application stack. source drivers to order the sequence of installations and startups.
The drivers specify the order in which operations can be performed
. L on a resource instance, and also implement each operation using
We present Engage, a system f_or managing application StaCkan underlying programming language. The runtime system moni-
configuration, msta]laﬂc_m, and maintenance. Engage has_ threetors the application as it runs, and can manage the application stack
components. The first is a declara_tlve fr_amework for specifying e.g., to stop the application) based on the dependency order spec-
component metadata suqh as configuration parameters as well a%ied in the install specification. At the end of this process, the user
dependencies betweerfidrent components and services. The sec- g4 14 have a full application installed, configured, and running,
ond is a constraint-based algorithm that tak@sdial installation

ificati list of th 4 licati ts 10 be i potentially across multiple machines.
specification(a list of the main application components to be in- We have implemented the Engage system and have used Engage
stalled) and automatically produces a full installation specification

. - . ! as the deployment and management tool for a number of case stud-
(alist of all components to be installed). Finally, a runtime system o5 "The core of Engage contains about 26K lines of Python code,
co-ordinates the installation of components in an installation spec- 6K lines of OCaml code, and about 5K lines of metadata. Engage is
ification and manages the deployed system locally or on the cloud. jseqrated with both Rackspace and Amazon Web Services and can

In Engage, a component, calledresource is modeled using

. : depl licati th ices. E has b d as th
two parts: aypeand adriver. A typefor the resource describes con- eploy applications Oft tESE SErvices. Engage has been used as the

; 5 X . : . core technology behind a commercial platform-as-a-service com-
figuration options and dependencies associated with a component 9y b

Th f ;) . red fi ; pany for application stacks written in Django and using standard
e configuration options specify required configuration parame- ., nnanents such as Python packages, databases (MySQL), key-
ters for the components, including input configuration options that

. value stores (Redis, MongoDB), message queues (RabbitMQ, Cel-
are provided by components that the current resource depends Onery) and web caches (Memcached). It héiciently managed the
and output configurations that the configured resource exports to 4)

: X - configuration, deployment, and upgrades of complex third-party
downstream dependencies. The dependencies specify other comsjications. In addition, we have used Engage to configure and
ponents the current resource depends on, such as the machine 'ﬂlanage Java-based and pure Python applications.
which it executes, other libraries and services that must be present
on the same machine, and other services (possiblyfiferdint ma- Related Work Engage is dferent from aroperating-system-level
chines) that it requires. Ariver for the resource specifies a state package managefOSLPM), such as dpkg for Debian, RPM, or
machine that manages its lifecycle at runtime (e.g., installation, apt. These tools manage dependencies among packages on a single
startup, shutdown, etc.). Together, the type and the driver specify machine, but do not provide support for configuration management,
completely the dependencies and the configurations required to in-application management (e.g., server startup), or multi-machine de-
stall and use a resource. A subtyping mechanism ensures that eacployments. However, they form the building blocks for Engage: a
resource can be developed independently and reused in many dif-driver for a resource can use an OSLPM to install the required pack-
ferent contexts. ages on a machine. Thus, Engage is complementary to OSLPM,

A resource instance a specific instantiation of a resource that and uses OSLPM’s to provide support for higher-level issues in ap-
is deployed, for instance, a specific server or a specific instance ofplication deployment and maintenance for each platform.
a MySQL database. An application is described by compositions ~ Constraint-based tools [11,]17--19] manage individual software
of resource instances (amstallation specificatiopy and it can be packages at a single machine level, but do not provide support for
checked statically to ensure that all dependencies are met, thereconfiguration management, multi-machine deployments, or appli-
are no circular or conflicting dependencies, and that configuration cation management. A constraint usually specifies pre-requisites
parameters between dependent components are passed correctlfand conflicts) for a package, but does not model configuration pa-
For example, we can check that, if an application component has rameters or service starfighutdown requirements. The constraint-
a dependency on a database, there is a resource instance in the ifbased configuration in Engage is inspired by these tools, but in
stallation specification corresponding to a database component, andaddition, Engage provides support for configuration and applica-
the application component gets its input configuration options for tion management across multiple physical contexts (machines).
the database from the outputs of the database component. Since reFhe distribution editor of the EDOS projett[17] provides a means
sources can model the physical context of a machine, we can stati-to check the consistency and installability of a set of interdepen-
cally reason about the physical context; for instance, checking that dent packages. However, in the distribution editor, this informa-
certain libraries exist on the same machine. Additionally, the re- tion is not used for analysis or for application-level installation.
source drivers ensure that the runtime system has enough informa-Model-based formalisms are used to detect compatibility and up-
tion to start up and shut down services according to their dependen-grade problems [10, 11], but not across physical contexts, nor tar
cies. Thus, the resource types enable static checking of applicationgeted toward application stack management.
stacks for dependencies and conflicts, for configuration and phys- The inputoutpufconfiguration ports of Engage’s resource types
ical context management, and the types together with the driverswere inspired by module systems for more general purpose lan-
enable runtime application management. guages, including Units [14], nes€ [15], and ArchJava [7]. Un-

Rather than writing the entire installation specification, which like these systems, the connections between modules (resources)
can be long and tedious, Engage allows the user to only specifyin Engage are implicit, using dependency constraints to instanti-
a partial installation specificationwhich outlines the main ap- ate resources and establish connections. Engage’s resource defini-
plication components and the machines they should be installedtion language provides a combination of traditional module sys-
on. A configuration engindakes the partial installation specifi- tems (importingexporting definitions, subtyping of individual val-
cation and producesfall installation specificatiorby computing ues and structures) and constraint languages.
the transitive closure of dependencies of the components, resolving Engage is similar teonfiguration managemeaystems such as
choices between components through Boolean constraint solving,Puppet[[1], Chef([2], LCFG]8], and CfEngingl [9], which provide
and adding component dependency links to form a directed acyclic a domain-specific language to model the “desired state” for a ma-
graph of resource instances. chine, e.g., files that should be present and services that should be

running. These systems use a client-server model in which a server
holds the model of the desired state for a machine, and the client en-
sures this configuration is met. Engage improves upon the design of
existing configuration management systems in the following ways.
First, Engage separates the declarative specification of resources
(resource types) and the imperative details of their installation (in-
stances and drivers). This enables type-checking for configusation
and to detect configuration or dependency problems statically. Sec-
ond, through the constraint-based configuration engine, Engage al-
lows the compact specification of application stacks, usually over
an order of magnitude smaller than the full installation specification
required by other systems. In practice, we have found the combina-
tion of instancétype separation and a contraint-based dependency
model result in very flexible install specifications. We can take an
application and deploy it on multiple platforms (e.g. MacOSX and
Linux) and in multiple configurations (e.g. development, testing,
and production) without significantly more work than is required
for a single configuration. This is not possible with traditional con-
figuration management systems, which are optimized for keeping
large numbers of nearly identical systems in a given standard con-
figuraiton.

Finally, while configuration management systems can be used to
support resource management over multiple servers, each client is
usually managed in isolation with no coordination between servers.
Engage provides a means to coordinate and configure between
services across machines according to their dependencies.

SmartFrogl[16] supports distributed application deployment by
modeling the components of a system and providing a framework
for lifecycle managerto manage individual components and their
coordination. Engage’s deployment engine uses a similar approach,
with drivers in lieu of lifecycle managers. Engage additionally
uses the dependency relationship information it obtains from the
configuration phase to determine the sequencing of deployment
actions. The use of constraint-based configuration is also novel.

2. Overview

We now describe Engage through an example. As noted before,
Engage has three main components:

1. A declarative language to describesources A resource is
a generic term for a software package (e.g., the Apache web
server), operating system (e.g., Ubuntu 10.4), or a virtual or
physical machine. Its description consists ofype (the con-
figuration parameters and dependencies) add\er (a state
machine for managing the component).

2. A configuration enginghat takes a database of resources and
a partial installation specificatiorand produces &ull installa-
tion specificationthat describes how a collection of software
components should look when installed and configured.

3. The Engage runtime, consisting ofdaployment enginand
runtime services that install and manage components in a de-
ployment. It calls the drivers of each component in the full in-
stallation specification and starts services in dependency order.

OpenMRS We demonstrate how Engage can be used to install
and manage OpenMRS, an open source enterprise medical records
system[[20]. OpenMRS is written in Java, and runs as a servlet con-
tained within the Apache Tomcat webserver. It depends on Java,
version 5 or greater. Either the Java Developer Kit (JDK) or Java
Runtime Environment (JRE) may be used. The Tomcat distribution
should be at least version 5.5 but before 6.0.29. OpenMRS talks to
a MySQL database in the backend, where the MySQL distribution
should be version 5 or greater. In a production setting, the database
will run on a separate machine from the application server. Open-
MRS itself does not have any specific operating system dependen-

Server Java

1 3 ') X 1
. config_port " config_port .
V| host: ¢ . [JAVA_HOME: path J :
1 : 1 1
, | hostname: string - input_ports .
] ="local_host", "B 1
1 o 1 1 | host: {hostname, 1
1 | 0s_type: string, 1 1 | 0s_type, os_user_name} !
|| os_user_name: string} vt .
. : : output_ports .
Ve e e e — == s 1 | java: {type, !
: home = config_port. '
Windows—-XP extends Server 1 | JAVA_HOME} '

1

I N ——

config_port ! inside '
os_type = “windows-xp" : Server !
P P 1 map= {host = host} :

1
.) N e e e e e e e e, m, e ———- 1

tend:
Mac OSX 10.6 extendsServer JDK 16 extends Java

s Y :
config_port []

[os_rype = "mac-o0sx"] JRE 1.6 extends Java

i— |

MySQL 5.1

i t
config_por input_ports

|

install_dir: path = “/var/data”
port: tcp_port = 3306
admin_password: password = "admin”

output_ports

mysql: {host = input_ports.host.host_name
port= config_port.port
admin_password= config_port.admin_passsowrd}

inside

[Server map= {host = host}]
. J
Tomcat 6.0.18
e - 2
config_port input_ports

manager_port: tcp_port = 8080
admin_password: password = “admin”

admin_user: string = “admin” ‘

output_ports inside
[tomcat: {-} } [Server map= {host = host} J
environment
[Java map= {java = java} }

\ J
OpenMRS 1.8

s Y

config_port

database_password: password = “openmrs”
home: path = "/users/jfischer/test/openmrs”

database_user: string = “openmrs” ‘

input_ports
[java: {...}, tomcat: {...}, mysql: {...} J
out_ports
url = “input_ports.tomcat.host.host_name
:input_ports.tomcat.manager_port/openmrs”
inside
[Tomcat 6.0.18 map= {tomcat = tomcat}]
environment
[Java map= {java = java}]
peers

[MySQL 5.1 map= {mysql = mysql}]

Figure 1: Resource types for OpenMRS installation

{ "id": "server", "key": "Mac-0SX 10.6",
"config_port": {

hostname="1localhost", os_user_name="root"

}
ip

{ "id": "tomcat", "key": "Tomcat 6.0.18"

"inside": { "id":"server" }

s

{ "id": "openmrs", "key": "OpenMRS 1.8"
"inside": { "id":"tomcat" }

}

port, that copies its value from the configuration port for down-
stream components connecting to it.

The dependencies come in three types.idgide dependency
specifies the container resource in which the current resource must
execute. In general, this is a physical or virtual machine, or a “con-
tainer” like Tomcat which contains other packages. If a resource
does not have an inside dependency, it corresponds to a virtual or
physical machine. For example, the (abstract) rescigeeer and
its subclasseBac 0SX 10.6 andWindows-XP refer to machines.

On the other hand, the resourbancat 6.0.18 has an inside de-

pendency on erver, meaning that in a deploymemgmcat runs
inside a sub-class of resource typerver (sinceServer is ab-
stract and cannot be instantiated). The reso0pemMRS 1.8 has
an inside dependency dfomcat 6.0.18, since it executes as a
servlet inside th&omcat server.
An environment dependenspecifies other resources that must
be present (and possibly execute) on the same machine as a pre-
condition for the installation and execution of the current resource.

Figure 2: Partial installation specification for OpenMRS

cies. Thus the operating systems are limited by the availability of
Java and MySQL. This includes Windows X#sta, Linux, Solaris,
and Mac OSX. Diferent executables for Java and MySQL are re-

quired for each platform. F le. botlT d MRS h) td
A single-machine installation for OpenMRS is described on the FOF €xample, botffomcat andOpenMRS have environment depen-
dencies orlava, which means that an instance of a subclass of re-

OpenMRS web page, and consists of a 10-page document. This

document gives a list of the software components which must be SOUrCe type ofiava must be installed on a machine befaxmcat
installed in order to install OpenMRS, in their dependency or- or OpenMRS can be installed on that machine. In addition, an envi-

der. It points to a dferent document for installing and configur- ronment dependency also specifies how configuration options from

ing MySQL. Moreover, the document gives separate conditions for the output ports of a resource flow intc_) the jnput ports of the current
Windows and for Ubuntu (after 10.10 and before 10.10). The instal- "€Source. For example, the output pgava in the Java resource

lation requirements and dependencies in the installation are giventypi IS an lgput t(gpenMRS f18 th t but not
as comments in the document. We give two examples: peer depenaencypecities resources must be present, but no
necessarily on the same machine. For exanggenMRS 1.8 has

a peer dependency on thigSQL 5.1 database, meaning that an
instance ofMySQL 5.1 must be deployed beforépenMRS 1.8
can be deployed, but possibly on a machin@edént from that of
OpenMRS.
Itis the user’s responsibility to troubleshoot the installation if some ~ When a resource typ& depends on a resource tyj@ the
of these conditions are not met. When moving from one deploy- resourceA can obtain the value of an output port Bfby using a
ment (e.g., test) to another (e.g., production), the user must man-port mapping A port mapping relates an output port of a resource
ually reconstruct all the installation steps (or write ad hoc scripts type to an input port of another. For exampleenMRS 1.8 maps
to automate the steps). Moreover, the instructions are sometimesthe output portysql of MySQL 5.1 into its input port that has the
incomplete (for example, how to check if Tomcat is started on same name.
Ubuntu? How to check it programmatically?). Our intentis notto Well-formed sets of resource types ensure that the union of all
deride the OpenMRS installation document (indeed, OpenMRS hasdependency relations is acyclic, and that each input port is mapped
a very readable set of instructions), but to point out that these are exactly once by the set of dependencies. Given a resource, we call
common issues in many installation specifications. the set of resources that it transitively depends on its sgistfeam
dependencieand the set of resources that transitively depend on it
its set ofdownstream dependencies
Resourcaypescorrespond to the classes in an OO language,
resourceinstancegepresent specific resources instantiations (e.g.
a copy ofMySQL 5.1 installed on servedemotest and listening
on port 3306) and correspond to objects. An instance of a resource
has a globally unique identifier, fills in concrete values for all
orts, and replaces each dependency in the resource type with a
oncrete instance. A full installation specification provides a list
of each instance required to deploy an application. For example,
given resource typegor each component required by OpenMRS,
the user can write an installation specification describing all the
components that are required to install OpenMRS. Engage’s type

ts of tvped P tion. inout. and outout port dd system can check the installation specification to make sure all
Source, Sets of typed configuration, Input, and output ports, an e'required dependencies are present in the correct physical context

pend_ency specifications on other components. Typically, the key and that each instance is correctly configured.

consists of the name of the pack'age and its version. The pqrts Spec- Writing full installation specifications can get tedious. Engage’s
ify attributes (key-value pairs) internal to the component's con- .,ntiqration engine allows the end user to propaetial instal-
figuration (theconflguratlonports), attributes c_ierlved from other lation specificationsand automatically determines what other re-
c?tmé)otnerlths ??hWh'Ch the cotmponetnttdeé)endpf([ports), and Sources must be instantiated to deploy the system. Figure 2 shows
attributes tha E e compolnenh exports 1o ownfs ream componentSy,q partial installation specification written by a user for Open-
(outputports). For example, the resource type for MggQL 5. 1 MRS. It consists of three resource instances: an instaageer

(MyS_QL version 5.1) has a configuration port callparrt that for a machine running Mac OSX version 10.6, an instarmecat
specifies the default port (3306), and has an output port, also called '

¢ Java must be installed before installing Tomcat.

e [When starting OpenMRS] Ensure that Tomcat is started by
checking to see if icon in the tray is green (Windows install).

Engage We now describe how the OpenMRS installation is man-
aged in Engage. For simplicity, we only describe the configura-
tion for a Mac OSX 10.6 server with Tomcat 6.0.18. Software or
hardware components, callegsourcesare represented in Engage
using two parts: aesource typalescribes the configuration meta-
data and dependencies on other resources, ergbarce drivede-
scribes a state machine that manages the lifecycle of the resource
We assume resource types and drivers are written by the componen
developer, not the end user installing the application.

We first describe resource types. Figllte 1 shows the resource
types that are relevant to the OpenMRS installation (simplified for
readability). (We omit describing a concrete syntax for resources.)
Each resource description has a (unique) key identifying the re-

of Tomcat running insideerver, and an instancepenmrs for [T activg

the OpenMRS application running insidemcat. In particular, the : install start — restart
user does not have to explicitly give the other dependencies on Java _ inactive _.
and MySQL. The partial installation specification may also define uninstall stop

values for individual configuration port properties. In our example, [{ inactive

the hostname and os_user_name properties have been assigned

values. Unassigned configuration properties will take the default Figure 3: Resource driver for Tomcat

values defined in the associated resource types.

The configuration engine takes this partial installation specifi-
cation and expands out all the dependencies to generate a set of
Boolean constraints such that the Boolean constraints are satisfi-ure[3 shows an example resource driver for Tomcat. An action
able it there is a full installation specification which includes all of (e.g.,install) is implemented in an underlying programming lan-
the resource instances mentioned in the partial installation specifi-guage and performs some modification of the system state. For
cation. The atomic propositions in the Boolean constraints consist example, theinstall action can call an OS-level package man-
of instances of resources: the proposition is true in a satisfying as-ager to download and install a package. A guard describes a pre-
signmentff the corresponding resource instance must be deployed. condition for the action, and is omitted if an action can be per-
For the partial installation specification of Figlide 2, the configura- formed at any time. A guard of the fortns (respectively] s) states

tion engine generates the following constraints: that an action can be performed only when the state machines of
. all upstream (respectively, downstream) dependencies are in state

server A from install spec s € {uninstalled active inactive. The actions on the state machines
tomcat A from install spec are performed by the Engage runtime system. The runtime system
openmrs A from install spec manages the state machines of all installed components and can
openmrs — R{jdk, jre} A envdep check the status of guards. The runtime system can also monitor
tomcat — ®{jdk, jre} A envdep a deployment and shut it down (by shutting down services in the
openmrs — mysql A peer dep reverse order of dependencies).
tomcat — server A inside dep Engage ameliorates the problems of manual deployment in the
openmrs — tomcat A inside dep following ways. First, dependencies among resource types ensure
mysql — server A inside dep that required packages are installed when a resource instance is
jdk — server A inside dep being installed (e.g.Java has already been installed before in-
jre — server inside dep stalling Tomcat). Second, the resource drivers and the runtime

ensure that required services are already started when starting an
application (e.g.Tomcat andMySQL daemons are already started
whenOpenMRS is started: their resource drivers are bothaative

when startingOpenMRS). While there is work involved in devel-
ping resource types and drivers, they are done once by the pack-
ge developer, and any subsequent installation scenario involving
the resource is completely automated. In contrast to ad hoc cus-
tom scripts, the declarative language enables static detection of

. . . i configuration problems, e.g., cyclic dependencies between compo-
instance and installing MySQL on that machine. However, our con- 1o or unsolvable constraints in installation. In contrast to con-
straint generation process assumes that no new machines should b,

hy o . ﬁguration management systems, the configuration engine signifi-
created. Thus, unless exphcnly specmed,_a peer dependency is Ole'cantly reduces user input: in our implementation, the (unsimplified)
ployed at the same machine as the machine of its dependent.

Th traint tisfied b it - dk OpenlMRS partial installation specification took 22 lines, and the full
e constraints are satisfied, e.g.,, by setisigyver, jdk, installation specification was 204 lines. Note that resource descrip-

tomcat, mysql, andopennrs to true, andjre to false. This cor- yonc"are reysable and can be used ifiedent installations: e.g,
responds to a deployment wl_qere a Java development kit, a TomcattheMySQL resource can be used in any deployment that requires a
server, a MySQL database instance, and the OpenMRS appllca-MySQL database

tion are all installed on a server running Mac OSX 10.6. Given
this solution, we can also “tie together” the input and output ports
by traversing the resource instances in topological order of depen-3. Resource Types
dencies, starting with the output ports sérver, and using the

whererS is the “exactly one” predicate that asserts that exactly
one proposition from the s& is true. The first three constraints
arise from the partial installation specification (each instance there
must be deployed). The next three arise out of environment (and
peer, for the last one) dependencies, and state that the deploymen
of the L.h.s. implies the deployment of the r.h.s. The final five arise
out of inside dependencies. Note that the peer dependency of Open
MRS on MySQL could be resolved by “creating” a new machine

definitions of output ports of preceding resource instances to get In Engage, th_e fundamental abstraction fc_)r software anq h_ardware
components is asource A resource consists of a description of

values of input ports according to the port mappings specified in the metadata required to configure, install, or upgrade a compo-
the dependencies. Valuations to the input ports then determine thenent (itsresourceqt pand adrivger C(;nsistin’ of nge that readsp
configuration and output ports of the instance. In this way, we can the metadata and rﬁma es the lifecycle oft%le component (installa-
propagate configuration options along the application stack. The re-ion uparade. rollback gtc) We exylain resource F es here. and
sult of this process isfaill installation specificationthat details the | _p%_ s in SectivHls. P yp ,
components that must be installed, their configuration parameters,exp ain drivers in secti :
and the order of their installation. The last is obtained via the partial
order imposed by the dependencies of the resource instances.
Finally, the Engage deployment system takes an install spec- A resource typés an abstraction to model how a component may
ification and deploys the components in the order of dependen- be instantiated. Aesource instancis an instantiation of a resource
cies. The deployment system uses the corresponding driver fortype that describes how a specific resource will be (or has been)
each resource instance. A resource driver is a state machine withconfigured and installed. In analogy with object-oriented program-
special statesninstalled active andinactive (the latter two pos- ming, a resource type is a class and a resource instance is an object
sibly the same state), with guarded actions between states. Fig-of that class. Each resource type has a unique identifier (usually,

3.1 Resource Types

name of the component and its version) in a global name space. In 1. Each key appearing in an inside, environment, or peer depen-
addition, a resource type has ports and dependency constraints. dency is mapped to a resource type in the set (no pending de-

Ports Configuration data for a component are describegbiris pendencies).

A port has anameand atype We assume an (unspecified) set of 2. If a resource does not have aside dependency, it does not
base types. For a popt we write p.name andp.type to refer to the have any input ports. Such resources usually correspond to
name and the type, respectively. Communication of configuration physical machines.
data between components is performed by connecting appropriate 3 gach input port is mapped exactly once in the port mappings
ports of two components. of the inside, environment, and peer dependencies. Each output
Dependencies Dependencies between resource types specify or- port is assigned a value. That is, the range of port mappings in
dering constraints between components, and determine how ports two dependencies is disjoint, and the union of ranges is the set
of a resource get their values. Engage specifies three types of de- of all input ports.

endencies. ; ; ;
P An inside dependencspecifies that an instance of a resource 4. The orderings; U <. U <, on resource types is acyclic.
type can exist qnlyinside an instance of another resource type; €.9-For any resource typR in a well-formed set of resource types,
Tomcat can exist only “inside” a Server. Each resource type has ei- 5nq can follow inside constraints to a machine. This represents the

ther zero inside dependencies, in which case it must represent Bhysical context in which an instanceRiwill be installed.
physical machine, or exactly one inside dependency. Inside depen-

dencies can be nested: e.g., a servlet can be inside Tomcat, which in
turn is inside a server. For any resource type, one can walk the in-3 2 Abstract Resources and Subtyping
side dependencies to eventually reach a physical machine, and thi
is the machine on which the component gets installed and run.

A resource typeR; has anenvironment dependen@n a re-
source typdR; if it depends on a resource of type to be installed
in an enclosing resource. As an example, Tomcat requires that the
Java runtime environment be installed on the machine itis installed
on. (However, Tomcat is not installed “inside” Java.)

A resource typdr; has goeer dependenan a resource type,
if it calls services provided by an instanceRf In this case, unlike

environment constraints, an instanceRfneed not be installed on Sub-resource types extend base resource type definitions by

the same machine as the instanceRpf For example, OpenMRS ; . ;
has a peer dependency on MySQL, and OpenMRS can make c¢ellls"’w|d'.ng ports and dependencies. Fields from a super-resource type
to the database over T@P. are |rT_1pI|C|tIy replicated in the sub-resource type, or overridden as
explained below.
Formal Model Formally, a resource type Figure2 presents the subtyping rules to ensure well-formedness
R = (key, InP, ConfP, OutP, Inside, Env, Peer) of the sub-resource tree. The rules define subtyping relatipns

.] o <confy @aNd<,,¢ fOr input, config, and output ports, respectively, their
consists of a (globally uniquékykey (usually consisting ofaname extensions to sets of ports and port mappings, arg-arelation
and a version), three disjoint setsinput portsinP, configuration that checks for subtyping between resource types by checking sub-
portsConfP, andoutput portsOutP, an optionalnside dependency typing of the corresponding resource types of their inside, environ-
Inside or null, a set OfenV”Onment dependenCIESIV, and a set rnentY and peer dependencies_ We assume an (unspeciﬂed) Subtyp_

e extend the core language with inheritance and abstract resource
types. A resource type can be markalistractor concrete An
abstract resource type cannot be instantiated, but can be used for
inheritance. For example, in Secti@h 2, we defined an abstract
resource typeServer for a server, and subclasses for Mac OSX
and Windows servers. The genesierver cannot be instantiated,

but its subclasses specifying the OS can be instantiated. Instances
of concrete resource types can be deployed. By default, we assume
resource types are concrete and omit the concrete qualifier.

of peer dependencieBeer. We assume each popt € ConfP is ing relation< on the base types over which ports are defined. Note
either mefaultconstant.or qeﬁned as a function of the portmiﬁ, that the Subtyping relation on base types go on Opposite directions
and each porp € OutP is either a default constant or defined as a for input ports and for config and output ports. This is related to
function of the ports innP U ConfP. For a keykey, we write [key] the usual co-variance and contra-variance of method arguments.

to denote the (unique) resource type for that key. For a resource syb-resource types extend base resource types by defining more
typeR, we writeR key, RInP, etc. to denote the components of the jnput, config, and output ports, subtyping the inside dependency,
resource type. and adding additional environment and peer dependencies.

The input ports are used to receive data from other resources.
The output ports are used tffect the behavior of other resources
by providing configuration data. The configuration ports are used to 3.3 Resource Instances
store resource-specific metadata used in configuration and installa-A
tion. A configuration port of a resource can read from an input port
of the same resource, and an output port of a resource can ogad fr
an input or config port of the resource.

Each dependency (inside, environment, or peer) is a pair

(key’, pmap), wherekey' is a key to a resource amuhap is a par- tifies the resource instance. The identifier helps distinguish two in-

tial ma_pping frgm key’].OutP to RInP. L . _stances of the same resource type in a deployment, e.g., two servers
Inside, environment, and peer dependencies induce orderlngboth running Mac OSX 10.6

rel_atlons on resource types. I__Rtar_1d R b_e resource types. We Deployment information for an application can be provided by
write R <; R (the inside ordering) ifRInside = (R key,). We giving a set of resource instances obtained from corresponding re-
write R <, R (theenwronme_nbrd_erlng) if)X key,) € REnv. We source types, such that for every instance in the set, each depen-
write R <, R’ (thepeerordering) if R .key,) € R Peer. dency is instantiated with a concrete link to another resource in-

A machineis a resource whose inside dependenayull. stance, and the values in the output ports and mapped input ports
Well-formedness A finite set of resource types is calledell- for the resource instances match. Such a document is referred to as
formedif the following conditions hold: aninstallation specification

resource instancés created from a resource type by assigning
concrete values to its configuration ports and by replacing depen-
dency constraints with directional links to other resource instances.
In addition to the components of a resource type, each resource in-
stance has a globally uniquesource identifiethat uniquely iden-

INPUT PORTS CONFIG PORTS OuUTPUT PORTS
p’.name = p.name p’.type < p.type p’.name = p.name p’.type > p.type p’.name = p.name p'.type > p.type

p, <in P p’ <conf P p, <out P
SETS OF INPUT PORTS SETS OF CONFIG PORTS SETS OF OUTPUT PORTS
YpeP-Ap eP -p' <inp VpeP-Ap e P - p' <ou P VYpeP-dp e P - p' <out P

P'<inP P’ <conr P P’ <out P
PorT MAPPINGS REFL TRANS
V(p.g) em-3A(p".q) € m - (P <ou PA Y <in 0) R<rrR R <k R’
m <pm M R<grt R R<grr R’

RESOURCE TYPES
R.InP <y RInP R.ConfP <cong RConfP R.OutP <oyt ROUtP
(IR .Inside.key'] <grr [RInside.key'] v [R.Inside.key’] = [R.Inside.key’] = null) A (R.Inside.pmap <,m RInside.pmap)
Y(l,m) e REnv-3(1",m) e R.Env- ([I'] <7 [T A M <pmm) Y(X, m) € RPeer- 3(X’,m') € R.Peer - (IX'T <gr [XT A M <pmm)

R <pTR

Figure 4: The rules for subtyping between two resource types.

3.4 Syntactic Sugar and Extensions 4. Configuration

For brevity, we introduce some syntactic sugar in the language andIn practice, writing the entire set of resource instances in an instal-
in our examples. We allow a port to be a structure with named lation specification can be tedious. Instead, Engage allows the user
fields. We allow disjunctions in the descriptions of inside depen- to specify apartial installation specification. A partial installation
dencies, and positive Boolean combinations of resource types inspecification is a set of partial resource instances, that is, a set of
environment and peer dependencies. For example, we can expresgesource instances for which only a subset of dependencies are in-
that a resource typR (e.g., Tomcat) is inside either resource type stantiated by concrete resource instances. For example, Ebure 2

R; (e.g., Mac-OSX 10.6) or resource typg (e.g., Windows 7), shows a partial installation specification with instaseever ob-
and a resource tyde (e.g., OpenMRS) has an environment depen- tained from a resource of type Mac OSX 10.6, a resource instance
dency on resource typ®, (e.g., Java) as well as one Bf (e.g., tomcat for a resource of type Tomcat 6.0.18, and a resource in-

MySQL) orR; (e.g., Postgres). The use of disjunctions is a conve- stanceopenmrs for OpenMRS 1.8. An installation specification
nient shorthand, and can be simulated by defining the appropriateextendsa partial installation specification if each resource instance
super-resource types and their sub-resource types. To simplify thein the partial specification is also present in the installation speci-
check for well-formedness, we require the ranges of two port map- fication. Engage automatically generatefsiléinstallation specifi-
pings that are disjunctively combined to be identical. cation extending the partial specification, by using the dependency
To model a common idiom in which a resource depends on one relations in the resource types and automated constraint solving.
of a number of versions of aftierent one (e.g., OpenMRS depends The configuration engine takes as input a collection of resource
on versions of Tomcat before version 6.0.29), we add syntactic types and a partial install specification (a collection of partial re-
sugar to allow specifying ranges of versions for the same pack- source instances) and produces as output a set of complete eesourc
age, which are internally expanded to disjunctions of tigedint instances (called the (fullpstallation specificatiopsuch that: (1)
versions satisfying the range. for every resource instance, and for every inside, environment, or
The implementation of Engage also has some extensions thatpeer dependency of its corresponding resource type, there exists
we do not model here. Each port of a resource type in our imple- a resource instance that satisfies the inside, environment, or peer
mentation has ataticor dynamichinding. A static port is assigned dependency, respectively, and (2) each input port of a resarce
a value at the instantiation time of a resource of that type. For ex- stance is mapped to exactly one output port offéedént resource
ample, these can be default values. A dynamic port is assigned ainstance.
value at the installation time of a resource. By default, we assume Given a partial instantiation specificatiah, the configuration
all ports are dynamic (and we omit mentioning the binding explic- engine computes a set of Boolean constraints using the following
itly). Only configuration and output ports can have the static bind- two steps. In the following, we assume that there is a fixed, well-
ing. A static configuration port must be a constant. A static output formed set of resource typeR, in the system and that every re-
port is either a constant or a function of static configuration ports. source instance in the partial install specification is an instantiation
Inside, environment, and peer dependencies are extended with twoof some resource type from this set.
port maps: in a dependency of resourRen R, one port map maps
output ports oR' to the inputs oR (as before), and the other maps
static output ports dRto input ports oi'«:. Static ports are ’l’JsefuI to Hypergraph Generation The hypergraph generation phase takes
flow configuration parameters in the “reverse direction” of depen- 5 partial install specification and constructs a direcésburce in-
dencies. For example, when installing OpenMRS, we need t0 passgiance graplvhose nodes are resource instances, and whose hyper-
a server configuration file back to Tomcat. In our implementation, eqges represent dependencies between resource instancest Withou
we use static ports to achieve this. However, by the nature of static |qg of generality, we assume that for each resource instance, the
ports, all configuration values flowing in the reverse direction can jnsige dependency is eithaal1 or a disjunction of resources, and

be resolved statically, and these configurations will be known when the environment and peer dependencies are a set of disjunctions of
installingR’ even thougtR has not been installed yet. [ESOUICES.

inside SeK/er inside Figure® shows the dependencies generated when processing the
G/' Vinsid partial instantiation specification of Figure 2. We have marked the
inside resource instances that were present in the specification with.a “

insid

JDK JRE MySQL
eny env p_ey Lemma 1. Let R be a set of well-formed resource types afid
Tochat inside Ope”JMRS a partial install specification. Then procedu@raphGen(R, 7)

creates a directed hypergraph & (V, E), such that: (i) for each
resource instance € 7, we have re V, and for each resource
Figure 5: Hypergraph for partial installation specification in FiglZ instance re V, either r € I or there is some resource instance
: r’ € I that is transitively dependent on the key of r; (ii) for
each resource instance ¢ V, if r.Inside is notnull, then there
is a resource instance’ re 7 such that there is an inside edge
from r to r’; (iii) for each resource key k such that there is an
If a resource type has a dependency on an abstract resourc@nyironment dependency from k to r, there is an hyperedge with
r, we replace the dependency tavith a disjunction of concrete goyrce r containing a target resource instance with key k such that

resources in the following way. We traverse the subtypesiof s resource instance is on the same machine as r; (iv) for each
the subclassing tree for starting atr and stopping whenever we regource key k such that there is a peer dependency from k to r,
see a concrete subtype ofin this way, we get a “frontierF of there is an hyperedge with source r containing a target resource

subtypes of of concrete resources. We replace the dependency onjnstance with key k.

r by a disjunction of the concrete resources=inFor example, if

there is a dependency on the abstract resolace (see Figuréll), Intuitively, this lemma states that the generated graph correctly
it is replaced by the disjunction of the concrete resoui®&s 1.6 encodes the dependencies of all resource instancgs in

andJRE 1.6. After this transformation, there are no dependencies

on abstract resources. (If such a frontier cannot be found, that is Constraint ~ Generation Given the directed hypergraph

if there is an abstract resource at the leaf of the subclassing treeGraphGen(R,), we generate Boolean constraints as fol-

rooted atr, we stop with an error.) lows. An atomic proposition is of the formsrc(id), whereid is a

The hypergraph generation algorith@raphGen(R, I), is a resource instance identifier; it states that the resource instance with
worklist-based algorithm to process instances. It proceeds as fol-identifierid is installed in the machine obtained by following its
lows. inside dependencies.

First, for every resource instance in the partial install specifica- We generate two kinds of constraints from the graph.
tion, we create a node in the hypergraph and add it to the worklist. ~ First, for each vertex in the constraint graph that represents a
Recall that in addition to the key of the resource, each resource resource instance specified in the partial install specification, we
instance is globally uniquely identified by an additional identifier. add the constraintsrc(m,id). This constraint ensures that each
Second, we iteratively process partial resource instances fromresource instance mentioned in the partial install specification is
the worklist until the worklist is empty. Suppose we are processing indeed instantiated in the deployment.
resource instanaeof resourceR. We go through the dependencies Second, we generatependency constraintsr each node as
ofr. follows. For each hyperedgawith sourcev and target$vi, . .., Vu},
We assume that the partial installation specification resolves we generate a constraint
inside dependencies of each resource instance in it by providing
a resource instance on whichis inside-dependent (that is, the
system does not generate new machines automatically). Gjven where =S is the Boolean predicate that is tru exactly one
we check that there is an existing resource instance which matchesproposition fromS is true. Formally,
the inside dependency. For each inside dependency, we create a

rsrc(v) — ®{rsrc(vy),. .., rsrc(vy)} 1)

directed edge labeledriside’ from the node in the graph that =S=(\/p)A A\p— /\ -0
represents to the node that represents its container. pes pes qeS.#p

Now consider environment dependencies dBy assumption, We denote the conjunction of the set of all above predicates
the environment dependencies are a set of disjunctions. For eachq, 5 set of well-formed resource type® and a partial install
dependency in the set, we create a hyperedge with soyeed specification/ asGenerate(R, 7).
targets as follows. Suppose the dependency is a disjunction of
resource keys, ..., k,, and consider the processing of Ky Tueorem 1. Let R be a set of well-formed resource types aha

If we can already find a nodg in the graph with key; such that partial install specification. There exists a full installation speci-

[kl <rr [ki] and such that; is inside the same machine as fication extending the partial install specificatioff the formula

we add the node, as a target of the hyperedge. If there is no such Generate(R, 1) is satisfiable.

node, we instantiate a new resource instapggwith keyk,, inside

the same machine as the machine,aidd the node for,ey to the A satisfying assignment to the Boolean constraints determines a

graph as well as the worklist. (We add,, to the worklist to ensure full installation specification extending the partial installation spec-

its dependencies are processed in the future.) At the end of thisification. We can compute the values of all input, configuration, and

process, we construct a hyperedge with soaraedn targets, one output ports of all resource instances by a linear pass in topological

for each disjunct in the dependency, and label it “environment”. order of dependencies, filling in the input ports of each resource
For peer dependencies of we proceed similarly. The only instance based on the already-computed values of output ports.

difference is that we look for a matching resource that is a subtype

of the key, but need not be on the same machine. If we find such

a node in the graph, we add it as the target of the hyperedge. If5' Deployment

we do not find a matching resource, we add a new instance, butEngage’sdeployment engintakes a full installation specification

conservatively assume that the new instance resides in the sameand automatically deploys the application. It provides runtime sup-

machine as. port for provisioning servers, co-ordinating installations, as well

as generic monitoring, shutdown, and upgrade services for appli- that every driver state machine is in its active state. At this point,
cations. The deployment engine usk#/ersfor each resource to the system is defined to be deployed.

co-ordinate its actions. The deployment engine orders resource instances according to
dependencies. Since the dependency ordering is acyclic, this is
5.1 Resource Drivers always possible. In the beginning, the resource driver for each

resource instance is in its initial state. The deployment engine
executes driver transitions to bring each driver to its active state.
The process can be performed in parallel, as long as the dependency
ordering is met, and the precondition for each transition is satisfied.
Since the deployment engine tracks the states of each resource
instance, it can co-ordinate the calls.

In the multi-host case, we must coordinate the install across
multiple hosts. The implementation of a multi-host install can be
simplified if one can partially order the machines such that for ev-

In addition to a type, a resource specifiedriver that implements
a state machine for the lifecycle management of the instances of
that type. A driver state machine consists of a sestatesand
a set oftransitionsbetween them. Each state machine has three
special statesyninstalled inactive and active called thebasic
states Initially, a state machine resides in itsinstalled

Each transition hasguardand araction The guard of each ac-
tion is eithertrue or a conjunctive condition about the basic states
of all the resource instances that the driver’s associated resource in .) . .

£ry two machinesn, andny, my is beforem, if there is some re-

stance depends on (i.e., the upstream resource instances) or the r inst o be installedrin that d d
source instances that depend on the driver's resource instange (i.e SCU'C€ instance to be installedrm that depends on some resource
pstance imy but no resource instance to be installechirdepends

the downstream resource instances). Basic state predicates are d X X . X .
the form? sor | s, wheres e {uninstalledinactive active. A ba- on some instance imy,. We have found this assumption to be yalld
sic state predicate s (respectively,) is true if the state machines [all the systems that we have modeled thus far, and our imple-

for all upstream (respectively, downstream) resource instanees ar Mentation makes this simplifying assumption. In this case, we can
in states. Each guarded action is implemented in an underlying break the overall install specification into per-node specifications

programming language (Python in our implementation) and run a slave instance of Engage on each target host. The entire
A resource instance starts its life in its initial statejnstalled deployment is then coordinated from a master host, with each slave

and proceeds through various states in the state machine dependinf!""'N9 W't“h Inohawet(Lenﬁss of rt]he othe.rst. Sloiave dzployments can
on transitions invoked by the deployment engine. If the guard of YN !N parailel when he slaves have no inter-cependencies.

a transition istrue, then the action can be performed at any time. Thfe run@;rr?e |nc.ltud.es a pé”g'n framewotr lt(folr trl':e automatllc 'E'
Otherwise, the transition blocks until the guard becomes true, at {€9ration with monitoring and management tools. -or example, £n-

which point the action is executed and the state is updated. gage integrates witmonit[4], a process monitoririgestart service.
Formally, the driver for a resource typeis a state machine The runtime system adds an instance of monit to the installation

(Q, uninstalled inactive active A, 5) consisting of a set oftates specification for each target host, ensuring that monit itself will be
Q (/vith {uninstalledinactive acti\}e} C Q, a set ofactionsA, and installed. After the deployment completes, the resource type is used

a (partial) transition function : Q x (BasicStatesPregt A) — Q, by the plugin to generate a monit configuration file registered with

whereBasicStatesPreis a conjunction of basic state predicates. ~ MOnit. Users can view the status and resource usage of each in-
Figure[3 shows the state machine for the Tomcat server. The stalled service. If the process asso_uatfed with a service fails, it wlll

server starts in the initialininstalledstate. The actiorinstall be automatically restarted by monit using a set of runtime services
takes it to theinactive state. From thenactive state, the action prowded. by Engage. L .

start takes it to theactive and has the precondition that all Shutting down an application goes in the reverse dependency
upstream dependencies are active. Fromattave state, thestop order, and applies transitions of each resource driver to bring each
action takes it back to thimactive state and has the precondition ~Stat€ machine to an inactive state. Again, the runtime co-ordinates
that all downstream dependencies are inactive. Iratitive state this activity since it knows the dependencies and tracks the states

the server can be restarted. Each guarded action carries out systefil (€ resource drivers.
changes and commands required to install, start, or stop the server,
as well as additional book-keeping.

)) Upgrades Initial deployment of an application stack is only one
5.2 Runtime Services part of its lifecycle. Changes after initial deployment may incude
Provisioning The starting point of a deployment is the set of bug fixes, enhancement.s, infrastructure updates, security patch.es,
physical or virtual servers on which the application software will be and updates to Engage itself. Given that Engage has a full descrip-
installed. Engage provides a set of runtime tools to determine prop- tion of the deployed system, multiple upgrade strategies are possi-
erties of servers, such as hostname, IP address, operating systenb,'e-) -)
CPU architecture, etc. These tools automatically create a resource Currently, we require that the user (or a utility program, as in
instance for the server, and in practice, are used to start writing athe case of Django) providepartial install specificatiordescrib-
new partial installation specification when the servers are known. ing the desired new state of the system. This is used to compute a
In addition, Engage provides integration with cloud servers through full install specification for the deployed system. The current sys-
thelibcloud APIs [3]. If a machine resource instance in the partial tem is then backed up, and any components that will be removed
installation specification does not include configuration details, and Or that cannot be upgraded in-place are uninstalled. The new sys-
Engage is being run in a cloud environment, a new virtual server is t€m is now deployed, per the install specification, upgrading and
provisioned to perform the role of that machine in the deployment. adding components as needed. If the upgrade fails, the partially
In this case, the additional host configuration details (obtained from installed components are uninstalled and the old version restored
the cloud infrastructure) are added to the installation specification from the backup. This upgrade approach is relatively easy to im-
before passing it to the configuration engine. Engage currently in- Plement, supports rollback in the case of errors, and can handle

tegrates with Rackspace cloud services and Amazon AWS. changes to any layer of the stack, including Engage. However, all
upgrades using this approach experience the worst case upgrade
Installation, Monitoring, and Shutdown Given a full installation time, even if there are only minorféirences between the old and

specification, the deployment engine executes commands on thenew configurations. We leave optimizations of the upgrade frame-
resource drivers for each resource instance in the specificatin suc work as future work, possibly extendirig [11].

App name Description Source Comments

Areneae Simple test app Beta tester Deployed by a third party
Buzzfire Twitter bookmark and ranking app Open source Uses Reyligdtee store
Codespeed Web application performance monitor Open source

Django-Blog Blogging platform Beta tester Deployed by a third party;

Installs 18 Python package
dependencies

Django-CMS Content Management System Open source

FA Manage faculty, student, and postdoc applications Beta tester Applicetézhin production
Feature Collector Gather software feature requests Developed internally

WebApp Run production web site for Django hosting company Develogechaly Application used in production

Table 1: Django applications. “Beta testers” are independentieafbn developers who used the service.

6. Evaluation The automated installation of Jasper Reports Server via En-
jgage performs environment checks (e.g., required /TRCPorts

are available), downloads required application packages, installs
the components in dependency order, and starts the database, web
server, and reports server. After installation, the reports server can
be managed (start, stop, status check) via Engage, or automatically
integrated with 3rd party management tools.

The development time for Engage support of Jasper Reports
Server was 3 hours 56 minutes. This time was broken down into
47 minutes for resource type design, 81 minutes for driver develop-
ment, and 108 minutes for debugging and testing.

Running the automated install of Jasper Reports Server takes
17 minutes if the required software packages are downloaded from
the internet and 5 minutes if they are obtained from a local file
cache. The automation of the Jasper install via Engage ensures a
repeatable process, supports both local and cloud-based targets,

case studies that we have performed using the system. The firs@d can be used as a part of a larger deployment (e.g., where the

(JasperReports) was used as a case study to compare times for Leports server can be used as a service to a web application). The

manual install versus the time needed to automate an installationpartial installation specification for Jasper is 26 lines long. The full

by developing the required resource types and drivers in Engage.|nstallation specification generated by the configuration engine is

The second (Django applications) describes our experience hosting34 lines long.

third party applications on the cloud.

We have implemented the Engage system and we have used
in active deployment in providing platform-as-a-service support
for Django applications. The front-end for the declarative frame-
work and the configuration engine are written in about 6K lines of
Ocaml. We use the the MiniSat satisfiability solver to solve Boolean
constraints. The runtime system (provisioning and deployment en-
gine) and resource drivers are written in about 26K lines of Python.
In addition, we have about 5K lines of resource types in our re-
source library. We allow deployments to be performed either on
a given set of servers or on dynamically provisioned servers from
Rackspace or Amazon Web Services (AWS). The entire system,
including the resource types, is open source and (for Django appli-
cations) available through a web service.

We have installed several open source applications, including
OpenMRS (described in Sectibh 2). In the following, we give two

6.2 Django Applications

We implemented resources and drivers for installation and man-
agement of applications developed in Django [6], a web applica-
The Jasper Reports Server [5] provides a web user interface andion framework written in Python. A goal of our Django support
web service APIs for generating, viewing, and managing reports. was to enable Django developers to deploy their existing applica-
It runs in a servlet container (e.g., Apache Tomcat) and requires ations on diferent environments (local test environments and pro-
database (e.g., MySQL). The installation guide is 77 pages long, duction environments on the cloud) with little changes and no need
with 8 pages dedicated to the specific approach we used for in-to understand the internals of Engage. To achieve this, we built an
stalling Jasper. application packagethat validates a Django application, extracts
We compared the time for installing Jasper manually with the some metadata used by Engage, and packages the application into
time to automate the installation of Jasper in Engage. The manualan archive with a pre-defined layout. This application can then be
installations were performed by one of the authors, who had not deployed by Engage to the cloud or a local machine. We provide
attempted to install Jasper previously. It took him 5 hours the first pre-defined partial installation specifications for the same appli-
time, 2 hours 15 minutes the second time, and converged to aroundcation to be deployed in fierent configurations (e.g., debug or
1 hour in subsequent tries. Much of the learning curve was due production, local or cloud), supporting the migration of changes
to imprecise instructions that led to incorrect actions (followed through the full development lifecycle: from development to QA to
by debugging sessions and rolling back), environment issues, andstaging to production.
locatingdownloading the required prerequisite software. Django support involves 37 resources, of which 14 are specific
Engage already included resources for Tomcat and MySQL. To to Django applications. Engage allows the following (independent)
automate Jasper installation, we created two new resources: one fotonfiguration choices for Django applications:
Jasper Reports Server itself and one for a MySQL JDBC connector
required as a dependency for Jasper. Specifying the resource type e OS: MacOSX (two versions) or Ubuntu Linux (two versions)
for the JDBC connector required 40 lines. No additional Python e Web server. Gunicorn or Apache HTTP server
code was required for the driver as we were able to reuse existing e Database SQLite or MySQL
generic driver code for downloading and extracting archives. The e Optional components RabbitMQCelery (message queu-
resource for Jasper was 69 lines of types and 201 lines of Python ing), Redis (key-value store), and memcached (caching)
code (including comments). e Optional monitoring : Monit

6.1 JasperReports

Thus, we currently support 256 distinct deployment configurations References

on a single node. Furthermore, many topologies of these com- (1) pyppet at Puppet Labs: httswww.puppetlabs.com
ponents are permitted by the Engage architecture: everything de- .

ployed to the same node, a separate node for each component, [2] Chef at OPSCOde' htwwWW'OpSCOde'ComheV‘
multiple application nodes, etc. Finally, our Django driver supports [3] Apache Libcloud: httpylibcloud.apache.ofg

the declarative enumeration of Python packages available from the [4] Monit: http;//mmonit.conimonit.

Python package index (htffpypi.python.org) to be installed as a [5] JasperReports Server: hifww.jaspersoft.corieporting-server
prerequisite to the Django application. [6] Django: httpstwww.djangoproject.cofn

Evaluating installs We have evaluated Engage’s Django support [7] J. Aldrich, C. Chambers, and D. Notkin. Architectural seaing in
by testing it with Django applications developed by us, obtained as ArchJava. IECOOP '02 pages 334-367. Springer, 2002.

open source applications, and provided by third party beta testers. [g] p. Anderson and A. Scobie. LCFG: the next generationUKUUG

Table[1 summarizes eight of the applications we deployed. All Winter Conference. UKUU®002.
eight appllca}tlons were deployable by Engage without requiring [9] M. Burgess. A site configuration engine.Computing Systems
any application-specific deployment code. Areneae and Django- 8(2):309-337, 1995.

Blog are particularly interesting, as they were developed and de- [10] A. Cicchetti, D. Di Ruscio, P. Pelliccione, A. Pieranto, and S. Za-
ployed by beta customers (who had no prior contact with the paper cchirol. A model driven approach to upgrade package basea/aef
authors), using only our documentation and a few email exchanges. systems. IrEvaluation of Novel Approaches to Software Enginegring
WebApp is the production infrastructure that runs a commercial pages 262-276. Springer, 2010.

PaasS (Platform as a Service) site. It is about 4K lines of code, and[11] R. Di Cosmo, D. Di Ruscio, P. Pelliccione, A. Pierantqriad S. Za-
uses asynchronous messaging, cron jobs, and caching. The partial ~ cchiroli. Supporting software evolution in component-th§©SS
installation specification for the production site is 61 lines long and systems.Science of Computer Programmirzf10.

has seven resources. The full installation specification generated by[12] R. Di Cosmo and J. Vouillon. On software component coability.
the Engage configuration engine from this spec is 1,444 lines long In SIGSOFT FSE 'Llpages 256-266. ACM, 2011.

and has 29 resources. [13] R. Di Cosmo, P. Trezentos, and S. Zacchiroli. Packageages in
Evaluating upgrades To evaluate application upgrades, we took FOSS distributions: Details and challengesHmtSWup '082008.
two snapshots of the FA application about four months apart. Both [14] M. Flatt and M. Felleisen. Units: Cool modules for HOT ¢mmges.
snapshots represented production versions of the application. Be- In PLDI'98, pages 236-248. ACM, 1998.

tween the two snapshots, the user interface, application logic, and[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, andCDller.

database schema all changed. We use Souttatabase migra- The nesC language: A holistic approach to networked embesiged
tion framework, in the Engage Django driver to support applica- tems. InPLDI'03, pages 1-11. ACM, 2003.

tion upgrades involving database schema changes. Using South[16] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. ElrA. Lain,

we were able to automatically upgrade from the old version to the P. Murray, and P. Toft. The SmartFrog configuration management
new version of the application, while preserving the content in the framework.Operating Systems Revig#8(1):16-25, 2009.

database. If we introduce an error in the second application version[17] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. rak,
that causes the upgrade to fail, Engage automatically rolls back to X. Leroy, and R. Treinen. Managing the complexity of largeefeand

the prior application version. open source package-based software distributionASIE ‘06 pages
199-208. IEEE Computer Society, 2006.
7. Conclusion [18] P. Trezentos, I. Lynce, and A. L. Oliveira. Apt-pbo: al the

software dependency problem using pseudo-Boolean optiamrizadn
We have presented Engage, a novel system for deployment of com- Asg '1q pages 427-436. ACM, 2010.

plex multi-component, distributed applications. Our contribution in [19] C. Tucker, D. Sheielton, R. Jhala, and S. Lerner. OPIUM: Optimal

this paper is twpfold. First, we introduce a d_omain-specific lan- package instailninstall manager. fCSE ‘07, pages 178—188. [EEE
guage that provides the necessary syntax to impose a set of com- computer Society, 2007.

mon structural dependencies between a set of inter-dependent re:.

inctl d licitly. S d t a tool suit [20] B.A. Wolfe, B.W. Mamlin, P.G. Biondich, H. Fraser, D. Zaeri,
sources succinctly and explicitly. second, we present a ool suite C. Allen, J. Miranda, and W.M. Tierney. Cooking Up an Openi8eu

that exploits the language: (i) to providéective static checks to EMR for Developing Countries: OpenMRS — A Recipe for Suceess
identify specification flaws and incompatibilities; (ii) to identify a ful Collaboration. InAmerican Medical Informatics Association An-
full installation specification of a system from an input partial in- nual Symposiuppages 529 — 533. AMIA, 2006.

stallation specification; (iii) to carry out an installation specifica-
tion automatically; and (iv) to manage the life cycles of installed
resources automatically.

	Introduction
	Overview
	Resource Types
	Resource Types
	Abstract Resources and Subtyping
	Resource Instances
	Syntactic Sugar and Extensions

	Configuration
	Deployment
	Resource Drivers
	Runtime Services

	Evaluation
	JasperReports
	Django Applications

	Conclusion

