
IOT, PYTHON, AND ML:
From Chips and Bits to Data Science

Jeff Fischer
Data-Ken Research
jeff@data-ken.org
https://data-ken.org
Sunnyvale, California, USA

PyData Seattle July 6, 2017

Agenda

¨ Project overview
¨ Hardware
¨ Data capture
¨ Data analysis
¨ Player
¨ Parting thoughts

© 2016, 2017 Jeff Fischer

Why Python for IoT?

¨ High-level, easy to prototype ideas and explore options
¨ Runs on embedded devices

¨ Python data analysis ecosystem

© 2016, 2017 Jeff Fischer

Array and matrix processing High level data analysis tools Numerical analysis routines Machine learning

Raspberry Pi

• Linux “workstation”
• Can run CPython and full

data science stack
• Not battery friendly

ESP8266

• System-on-a-chip with
32-bit CPU, WiFi, I/O

• Low power consumption
• Only 96K data memory!
• MicroPython to the

rescure

Project Motivation

¨ First thought about smart thermostat, but too dangerous
¨ Lighting is “safe”
¨ If out of town for the weekend, don’t want to leave the house dark
¨ Timers are flakey and predictable
¨ Would like a self-contained solution
¨ “Wouldn’t it be cool to use machine learning?”

© 2016, 2017 Jeff Fischer

Lighting Replay Application

Data
Capture

Lux Sensors

ESP8266 remote
nodes +
Raspberry Pi

Analysis and
Machine
Learning

Offline analysis
using Jupyter,
Pandas,
HMMlearn

Captured sensor
data

Smart Lights

Player
Application

Simple script using
HMMlearn and
Phue to control
Philips Hue lights

HMM state machines

© 2016, 2017 Jeff Fischer

Hardware

ESP8266

© 2016, 2017 Jeff Fischer

TSL2591
lux sensor
breakout
board

Lithium Ion
Polymer
Battery
3.7v 350mAh

MicroUSB to
USB cable

½ Size breadboard

Adafruit Feather HUZZAH
ESP8266 breakout board

ESP8266: Wiring Diagram

© 2016, 2017 Jeff Fischer

SDA

SCL

GND

3V

Raspberry Pi

© 2016, 2017 Jeff Fischer

Raspberry Pi 2

Breakout cable
“Pi Cobbler Plus”

Solderless Breadboards

Resistor

LED
TSL2591
lux sensor
breakout
board

Raspberry Pi: Wiring Diagram

© 2016, 2017 Jeff Fischer

Resistor
LED

Anode
(long lead)

Cathode
(short lead)

10k

GND

3.3V

SDA
SCL

GPIO 0

Data Capture

Lighting Replay Application: Capture

Lux
Sensor ESP8266

Front Bedroom Sensor Node

Lux
Sensor ESP8266

Back Bedroom Sensor Node

Raspberry Pi
(Dining Room)

MQTT
Broker

Data
Capture

App

Lux
Sensor

Flat
Files

© 2016, 2017 Jeff Fischer

MQTT

MQTT

Event-driven IoT Code Can Be Ugly

def sample_and_process(sensor, mqtt_writer, xducer, completion_cb, error_cb):
try:

sample = sensor.sample()
except StopIteration:

final_event = xducer.complete()
if final_event:

mqtt_writer.send(final_event,
lambda: mqtt_writer.disconnect(lambda: completion_cb(False), error_cb), error_cb)

else:
mqtt_writer.disconnect(lambda: completion_cb(False), error_cb)

return
except Exception as e:

error_cb(e)
mqtt_writer.disconnect(lambda: pass, error_cb)
return

event = SensorEvent(sensor_id=sensor.sensor_id, ts=time.time(), val=sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:

mqtt_writer.send(median_event,
lambda: completion_cb(True), error_cb)

else:
completion_cb(True)

def loop():
def completion_cb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def error_cb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(lambda: sample_and_process(sensor, mqtt_writer, transducer, completion_cb, error_cb))

Problems

1. Callback hell

2. Connecting of event streams intermixed with
handling of runtime situations: normal flow,
error, and end-of-stream conditions.

3. Low-level scheduling

4. async/await helps, but not much
© 2016, 2017 Jeff Fischer

My Solution: ThingFlow

¨ What is ThingFlow?
¤ A Domain Specific Language for IoT event processing
¤ Runs on Python3 and MicroPython

¨ Co-creator
¤ Rupak Majumdar, Scientific Director at Max Planck Institute for Software Systems

¨ Why did we create ThingFlow?
¤ IoT event processing code can be very convoluted
¤ No standardization of sensors, adapters, and transformations
¤ Different frameworks for microcontrollers, edge processing, analytics

© 2016, 2017 Jeff Fischer

Simple ThingFlow Example

o Periodically sample a light sensor
o Write the sensed value to a local file
o Every 5 samples, send the moving average to MQTT Broker

© 2016, 2017 Jeff Fischer

Lux
Sensor

Write
to

File

Event
Scheduler

Send
to

MQTT

Moving
Avg

Graphical Representation

sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)
scheduler.schedule_periodic(sensor, 5)

Code

ESP8266 ThingFlow Code

© 2016, 2017 Jeff Fischer

from thingflow import Scheduler, SensorAsOutputThing
from tsl2591 import Tsl2591
from mqtt_writer import MQTTWriter
from wifi import wifi_connect
import os

Params to set
WIFI_SID= …
WIFI_PW= …
SENSOR_ID="front-room"
BROKER='192.168.11.153'

wifi_connect(WIFI_SID, WIFI_PW)
sensor = SensorAsOutputThing(Tsl2591())
writer = MQTTWriter(SENSOR_ID, BROKER, 1883,

'remote-sensors')
sched = Scheduler()
sched.schedule_sensor(sensor, SENSOR_ID, 60, writer)
sched.run_forever()

https://github.com/jfischer/micropython-tsl2591

Sample at 60 second intervals

The MQTT writer is connected to
the lux sensor.

See https://github.com/mpi-sws-rse/thingflow-examples/blob/master/lighting_replay_app/capture/esp8266_main.py

Raspberry Pi Code

© 2016, 2017 Jeff Fischer

Lux
Sensor

MQTT
Adapter

Map
to

UTF8

Parse
JSON

Map
to

events
Dispatch

CSV File
Writer

(front room)

CSV File
Writer

(back room)

CSV File
Writer

(dining room)

https://github.com/mpi-sws-rse/thingflow-examples/blob/master/lighting_replay_app/capture/sensor_capture.py

Data Analysis

Lighting Replay Application: Analysis

Raspberry Pi
(Dining Room)

Flat
Files

HMM
definitions

Laptop

Jupyter Notebook

file
copy

© 2016, 2017 Jeff Fischer

Preprocessing the Data
(ThingFlow running in a Jupyter Notebook)

© 2016, 2017 Jeff Fischer

CSV File
Reader

Fill in
missing
times

Sliding
Mean

Round
values

Output
Event
Count

Capture
NaN

Indexes

Pandas
Writer

(raw series)

Pandas
Writer

(smoothed
series)

reader.fill_in_missing_times()\
.passthrough(raw_series_writer)\
.transduce(SensorSlidingMeanPassNaNs(5)).select(round_event_val).passthrough(smoothed_series_writer)\
.passthrough(capture_nan_indexes).output_count()

Data Processing: Raw Data

© 2016, 2017 Jeff Fischer

Front room, last day

Data
gaps

Data Processing: Smoothed Data

© 2016, 2017 Jeff Fischer

Front room, last day

Data Processing: K-Means Clustering

© 2016, 2017 Jeff Fischer

Front room, last day

Data Processing: Mapping to on-off values

© 2016, 2017 Jeff Fischer

Front room, last day

Applying “Machine Learning”

¨ Apply a supervised learning to create predictions for the light
¤ Regression => predict light value
¤ Classification => Light “on” or “off”
¤ Features = time of day; time relative to sunrise, sunset; history

¨ Challenges
¤ Transitions more important than individual samples (200 vs. 25,000)
¤ Different class sizes: light is mostly off
¤ Really a random process

¨ Solution: Hidden Markov Models
© 2016, 2017 Jeff Fischer

Hidden Markov Models (HMMs)

¨ Markov process

¤ State machine with probability associated with each outgoing
transition

¤ Probabilities determined only by the current state, not on history

¨ Hidden Markov Model
¤ The states are not visible to the observer, only the outputs

(“emissions”).

¨ In a machine learning context:

¤ (Sequence of emissions, # states) => inferred HMM

¨ The hmmlearn library will do this for us.
¤ https://github.com/hmmlearn/hmmlearn

¨ But, no way to account for time of day, etc.
© 2016, 2017 Jeff Fischer

Example Markov process
(from Wikipedia)

Slicing Data into Time-based “Zones”

© 2016, 2017 Jeff Fischer

Sunrise

30 Minutes
before
sunset

Max(sunset+60m, 9:30 pm)

0 1 2 3 0

HMM Training and Prediction Process

Training
1. Build a list of sample subsequences for each zone

2. Guess a number of states (e.g. 5)

3. For each zone, create an HMM and call fit() with the subsequences

Prediction

For each zone of a given day:
n Run the associated HMM to generate N samples for an N minute zone duration
n Associated a computed timestamp with each sample

© 2016, 2017 Jeff Fischer

HMM Predicted Data

© 2016, 2017 Jeff Fischer

Front room, one week predicted data

Front room, one day predicted data

Replaying the Lights

Lighting Replay Application: Replay

Front Room
Smart Light

Raspberry Pi
(Dining Room)

HMM
definitions

Player
Script

Back Room
Smart Light

Philips
Hue
Bridge

WiFi
Router
and
Switch

ZigBee

HTTP

© 2016, 2017 Jeff Fischer

Logic of the Replay Script

¨ Use phue library to control lights
¨ Reuse time zone logic and HMMs from analysis
¨ Pseudo-code:

Initial testing of lights
while True:

compute predicted values for rest of day
organize predictions into a time-sorted list of on/off events
for each event:

sleep until event time
send control message for event

wait until next day

© 2016, 2017 Jeff Fischer
https://github.com/mpi-sws-rse/thingflow-examples/blob/master/lighting_replay_app/player/lux_player.py

Parting Thoughts

Lessons Learned

¨ End-to-end projects great for learning

¨ Machine learning involves trial-and-error

¨ Visualization is key

¨ Python ecosystem is great for both runtime IoT and offline analytics

© 2016, 2017 Jeff Fischer

Thank You

Contact Me
Email: jeff@data-ken.org
Twitter: @fischer_jeff
Website and blog: https://data-ken.org

More Information
ThingFlow: https://thingflow.io

Examples (including lighting replay app): https://github.com/mpi-sws-rse/thingflow-examples

Hardware tutorial: http://micropython-iot-hackathon.readthedocs.io/en/latest/

